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Quantum mechanics in general
Starting point: energy = frequency

o State pure: |1, unit vector (ray) in complex Hilbert space
mixed: p, Hermitian trace-one non-negative matrix

@ Observable: operator O

O = 0O, Hermitian, real eigenvalues, standard in physics

o0 1= O, unitary, eigenvalues on unit circle, Weyl, Schwinger,. ..

OO* = O*O, normal, unitarily diagonalizable, most general case

i ; —iflt AN
e Evolution: cyclic group Uy = e 'n" = (e h)
|the) = Ut [to)
@ Observation (measurement)
Prob = tr(pmeterpsystem)y Born rule <= Gleason theorem

tr(A*B) = (vec(A)|vec(B)) is the Frobenius inner product iy



States in permutation quantum mechanics

Standard space in permutation representation

e Q={ey,...,

@ Hont = span{e, ...,

en'}, ontic elements
ex}, ontic
Hilbert space
@ P(Sy), permutation representation
of symmetric group

® Hont = Hiriv D Hstd, invariant
decomposition

Hiriv = spanf{e}, e =e1+...+ex
@ Hont L Hstd, projection
P, =1-— |<B>< L k) = 1P e

kel = 3 — ﬁ

|k — £, ]| = 1 = regular simplex
{lk«)}, affine barycentric coordinates
{|k«)} U {Ps|e)}, projective frame

semimodule H = NV
€2

¢ v
X nonnegative orthant

3/17



Quotes in support of the permutation QM idea |

RUNHETC-2020-03

Finite Deformations of Quantum Mechanics

Tom Banks
Department of Physics and NHETC
Rutgers University, Piscataway, NJ 08854
E-mail: banks@physics.rutgers.edu

Abstract

We investigate modifications of quantum mechanics (QM) that replace the unitary
group in a finite dimensional Hilbert space with a finite group and determine the minimal
sequence of subgroups necessary to approximate QM arbitrarily closely for general choices
of Hamiltonian. This mathematical study reveals novel insights about 't Hooft’s Onto-
logical Quantum Mechanics, and the derivation of statistical mechanics from quantum
mechanics. We show that Kornyak’s proposal to understand QM as classical dynamics on
a Hilbert space of one dimension higher than that describing the universe, supplemented
by a choice of the value of a naturally conserved quantum operator in that classical evo-
lution, can probably be a model of the world we observe.
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Quotes in support of the permutation QM idea Il

Gerard 't Hooft:
We postulate the existence of an ontological basis.
It is an orthonormal basis of Hilbert space that is truly superior
to the basis choices that we are familiar with. In terms of an
ontological basis, the evolution operator for a sufficiently fine mesh
of time variables, does nothing more than permute the states.
p. 66 in The Cellular Automaton Interpretation of Quantum Mechanics
Springer, 2016
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Decomposition of permutation evolution

Sy 2 g=(c1)(e)- - (ck), permutation is a product of disjoint cycles
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Single cycle generator of unitary evolution
c=cy=(0,1,..., N —1), cyclic permutation of length N

01 --- 0
e Plc)=X= 0 O . : , Sylvester’s “shift matrix”
10 - 0
Bx =(]0),...,|N — 1)), ontic basis
10 -~ 0
0 w
o FP(c)Fl=z=| | , Sylvester's “clock matrix”
00 --- Nt
Bz =(|Z;0),...,|Z;N — 1)) = BxF !, energy basis
1 1 . 1
]_ wil PPN wf(Nfl)
F = ﬁ : ; ; , Fourier transform
1 w (N-1) .. —(N=1)(N-1)

w = e2™/N  Nth base primitive root of unity (algebraic integer)
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Bx and Bz are mutually unbiased bases (MUBs)

1 N—-1

Zi0) = <= 3 [k
N k=0
I

1
(Z; 0| k) = —=w X

3

(Z:elk)f =~

=
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Bx and Bz and path integral formulation of QM
e path contribution e ~ elfLdt . il
@ evolution operator e 1M

@ inverse Legendre transform

L=pg—H ~ pq, — H—pq

il s i(Pae,—H=pay) _ dpay, o—iH o—ipay
——
3 2 1
(1) Ze*iqul, Fourier transform, change basis to p at time t;, Bz

qy

@ e, evolution in time t; — tp, action by Z

(3] E e'P% inverse Fourier transform, change basis back to Bx
P
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Cycle structure and decomposition of a quantum system
e Zy ~ (cn)

@ Ly ~=ZnxZyif ged(n ) =1 — Hpp >~ Hp @ Hy

— my Jm2 mg —
@ N=pi'py? - py —>G—Zp{n1><Zp2mz><~~><Zp;vK
Zy, if all primes pg,..., pk are distinct
G~

an arbitrary abelian group otherwise:

’ the fundamental theorem of finite abelian groups

Elementary unit of study #,m
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The complementarity principle

Niels Bohr:
... for objective description and harmonious comprehension it is

necessary in almost every field of knowledge to pay attention to

circumstances under which evidence is obtained.
Atomic Theory and the Description of Nature.

@ N2 — 1 real numbers describe general quantum state: p = p* trp =1

N — 1 parameters can be given by one measuring setup: p1 +...+py =1

N+ 1= (N2—1) /(N — 1) setups may completely restore p

@ Pair of setups A and B gives maximum information if
Pa=1{0,...,1,...,0} = Pg={1/N,...,1/N} and vice versa

» Mutually unbiased bases (MUBs): Ba, Bg

» Complementary observables: Oa, Op

Maximum number of MUBs N + 1 is reached at N = p™
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Bohr's complementarity and Pontryagin’s duality

a general view of the phase space

Phase space in general: A x A

o A:=Hom(A,U(1)), Pontryagin dual to
locally compact abelian group A

o A~ /:4 Pontryagin theorem

e A~ A for finite abelian group A (for R” too)
— finite (and classical) phase space: Ax A~ A x A,
which always has nontrivial
projective representations or, equivalently, central extensions

central extension
n
X R

Classical phase space: R” Hzp41 — Heisenberg group
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Minimal example: Klein four-group: V ~ 7, x 7, (: Z, X Zz>
@ Extension by group of roots of unity:
1-{1,-1} QG —>V-—-1
Qs ={1,i,j,k,—1,—i, —j, —k}, quaternion group

@ 2D projective representation

X:<1 0)7 ZZ(O _1>,XZ:<1 O),spec(XZ):{i’_i}

Pauli matrices:
ox=X, o,=iXZ, 0,=72

Dirac matrices

70:Z®]127
YV =-XZ@X, ¥ =—iXZXZ, ¥*=-XZ®Z

generate representation of the Clifford algebra Cly 3(R)
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Heisenberg-Weyl group and Schwinger unitary basis
@ Heisenberg's Canonical Commutation Relation: [q, p] = ik
o Weyl's CCR: XZ =wZX, w=e*™/N

@ Heisenberg-Weyl group Guw: Yiem = wkxtzm, k,4,m=0,1,...,N—1

1,  if N odd,

Yilm =
kem {(—1)“’]1, if N even.

Clifford group Gey: normalizer Gy in U(N), Gep ~ SP(2,Zy) X Gow

@ Schwinger unitary basis: {XEZ’"}
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Mathematics associated with Weyl-Schwinger formalism

@ complex Hadamard matrices

@ projective representations of abelian groups
and generalized Clifford algebras

o finite affine and projective geometries
o finite fields

@ number theory
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Problems

mutually unbiased bases:

‘(e,-|)§->|2 = %; finite projective plane
SIC-POVM (Szymmetric Informationally Complete Positive Operator Valued
Measure): Nz:l ) (a] = 1, |{ak] az>‘2

12th Hilbert problem

1 .
= m finite affine plane;
entanglement in finite QM

quantum tomography

quantum mereology

Wigner and Weyl functions in finite QM

coherent states in finite quantum systems

All this requires computer algebra and computational group theory
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Program for constructing unextendible sets of MUBs

Input:

Output:
C program, 3.3GHz PC P
a set of complex

Ne23. 6. 1oLl unextendible sets
Hadamard matrices e of MUBs

Maximal number of MUBs in problematic dimensions: 9l = M9 = 3

Times of hardest tasks: Ti9 = 1 h 23 min 32 sec, T11 = 9 min 53 sec
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