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Quantum mechanics in general
Starting point: energy = frequency E = hν

State
{

pure: |ψ⟩, unit vector (ray) in complex Hilbert space
mixed: ρ, Hermitian trace-one non-negative matrix

Observable: operator O
O = O∗, Hermitian, real eigenvalues, standard in physics

O−1 = O∗, unitary, eigenvalues on unit circle, Weyl, Schwinger,. . .

OO∗ = O∗O, normal, unitarily diagonalizable, most general case

Evolution: cyclic group Ut = e−i H
ℏ t =

(
e−i H

ℏ
)t

|ψt⟩ = Ut |ψ0⟩

Observation (measurement)
Prob = tr(ρmeterρsystem), Born rule ⇐= Gleason theorem

tr(A∗B) ≡ ⟨vec(A) |vec(B)⟩ is the Frobenius inner product
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States in permutation quantum mechanics
Standard space in permutation representation

Ω = {e1, . . . , eN }, ontic elements
Hont = span{e1, . . . , eN }, ontic

Hilbert space
P(SN ), permutation representation

of symmetric group
Hont = Htriv ⊕ Hstd, invariant

decomposition
Htriv = span{e}, e = e1 + . . .+ eN

Hont
P⋆−−→ Hstd, projection

P⋆ = 1−|e⟩⟨e|
N , |k⋆⟩ = 1√

2P⋆|ek⟩

∥k⋆∥2 = 1
2 − 1

2N
∥k⋆ − ℓ⋆∥2 = 1 =⇒ regular simplex
{|k⋆⟩}, affine barycentric coordinates
{|k⋆⟩} ∪ {P⋆|e⟩}, projective frame

e1 n1

e2

n2

semimodule H = NN

nonnegative orthant

tr
iv
ia
l
su
bs
pa
ce

di
m
=
1

e1
+
e2

standard
subspace

dim
=
N−

1

dom
ain

of
qu
an

tu
m

m
echan

ics

e
1 −

e
2

3/17



Quotes in support of the permutation QM idea I
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Quotes in support of the permutation QM idea II

Gerard ’t Hooft:
We postulate the existence of an ontological basis.
It is an orthonormal basis of Hilbert space that is truly superior
to the basis choices that we are familiar with. In terms of an
ontological basis, the evolution operator for a sufficiently fine mesh
of time variables, does nothing more than permute the states.
p. 66 in The Cellular Automaton Interpretation of Quantum Mechanics
Springer, 2016
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Decomposition of permutation evolution

SN ∋ g = (c1) (c2) · · · (cK ), permutation is a product of disjoint cyclesww�
P(g) = P(c1) ⊕ P(c2) ⊕ · · · ⊕ P(cK ) =


P(c1) 0 · · · 0

0 P(c2) · · · 0
...

... . . . ...
0 0 · · · P(cK )
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Single cycle generator of unitary evolution
c ≡ cN = (0, 1, . . . ,N − 1), cyclic permutation of length N

P(c) = X =


0 1 · · · 0
...

... . . . ...
0 0 · · · 1
1 0 · · · 0

, Sylvester’s “shift matrix”

BX = (|0⟩ , . . . , |N − 1⟩), ontic basis

FP(c) F −1 = Z =


1 0 · · · 0
0 ω · · · 0
...

... . . . ...
0 0 · · · ωN−1

, Sylvester’s “clock matrix”

BZ = (|Z ; 0⟩ , . . . , |Z ; N − 1⟩) ≡ BX F −1, energy basis

F = 1√
N


1 1 · · · 1
1 ω−1 · · · ω−(N−1)

...
... . . . ...

1 ω−(N−1) · · · ω−(N−1)(N−1)

, Fourier transform

ω = e2πi/N , Nth base primitive root of unity (algebraic integer)
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BX and BZ are mutually unbiased bases (MUBs)

|Z ; ℓ⟩ = 1√
N

N−1∑
k=0

|k⟩ωkℓ

w�
⟨Z ; ℓ |k⟩ = 1√

N
ω−kℓ

w�
∣∣⟨Z ; ℓ |k⟩

∣∣2 = 1
N
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BX and BZ and path integral formulation of QM
path contribution eiS ∼ ei

∫
Ldt ⇝ eiL

evolution operator e−iH

inverse Legendre transform

L = pq̇ − H ⇝ pqt2 − H − pqt1

eiL ⇝ ei(pqt2 −H−pqt1) = eipqt2︸ ︷︷ ︸
3

e−iH︸︷︷︸
2

e−ipqt1︸ ︷︷ ︸
1

1
∑
qt1

e−ipqt1 , Fourier transform, change basis to p at time t1, BZ

2 e−iH , evolution in time t1 → t2, action by Z

3
∑

p
eipqt2 , inverse Fourier transform, change basis back to BX
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Cycle structure and decomposition of a quantum system

ZN ≃ ⟨cN⟩

Znℓ ≃ Zn × Zℓ if gcd(n, ℓ) = 1 −→ Hnℓ ≃ Hn ⊗ Hℓ

N = pm1
1 pm2

2 · · · pmK
K −→ G = Zpm1

1
× Zpm2

2
× · · · × ZpmK

K

G ≃

ZN , if all primes p1, . . . , pK are distinct

A, an arbitrary abelian group otherwise:
the fundamental theorem of finite abelian groups

Elementary unit of study Hpm

10/17



The complementarity principle
Niels Bohr:

. . . for objective description and harmonious comprehension it is
necessary in almost every field of knowledge to pay attention to
circumstances under which evidence is obtained.
Atomic Theory and the Description of Nature.

N2 − 1 real numbers describe general quantum state: ρ = ρ∗, tr ρ = 1

N − 1 parameters can be given by one measuring setup: p1 + . . .+ pN = 1

N + 1 =
(
N2 − 1

)
/ (N − 1) setups may completely restore ρ

Pair of setups A and B gives maximum information if
PA = {0, . . . , 1, . . . , 0} =⇒ PB = {1/N, . . . , 1/N} and vice versa

▶ Mutually unbiased bases (MUBs): BA, BB

▶ Complementary observables: OA, OB

Maximum number of MUBs N + 1 is reached at N = pm
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Bohr’s complementarity and Pontryagin’s duality
a general view of the phase space

Phase space in general: A × Ã

Ã := Hom(A,U(1)), Pontryagin dual to
locally compact abelian group A

A ≃ ˜̃A, Pontryagin theorem

A ≃ Ã, for finite abelian group A (for Rn too)
=⇒ finite (and classical) phase space: A × Ã ≃ A × A,

which always has nontrivial
projective representations or, equivalently, central extensions

Classical phase space: Rn × R
n central extension−−−−−−−−−−→ H2n+1 — Heisenberg group
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Minimal example: Klein four-group: V ≃ Z2 × Z2
(
≃ Z2 × Z̃2

)
Extension by group of roots of unity:

1 → {1,−1} → Q8 → V → 1

Q8 = {1, i, j, k,−1,−i,−j,−k} , quaternion group

2D projective representation

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, XZ =

(
0 −1
1 0

)
, spec(XZ) = {i, −i}

Pauli matrices:
σx = X , σy = iXZ , σz = Z

Dirac matrices

γ0 = Z ⊗ 12,

γ1 = −XZ ⊗ X , γ2 = −iXZ ⊗ XZ , γ3 = −XZ ⊗ Z

generate representation of the Clifford algebra Cl1,3(R)
13/17



Heisenberg-Weyl group and Schwinger unitary basis

Heisenberg’s Canonical Commutation Relation: [q, p] = iℏ

Weyl’s CCR: XZ = ωZX , ω = e2πi/N

Heisenberg-Weyl group GHW: Ykℓm = ωkX ℓZm, k, ℓ, m = 0, 1, . . . , N−1

Y N
kℓm =

{
1, if N odd,

(−1)ℓm 1, if N even.

Clifford group GCℓ: normalizer GHW in U(N) , GCℓ ≃ SP(2,ZN) ⋊ GHW

Schwinger unitary basis:
{

X ℓZm
}
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Mathematics associated with Weyl-Schwinger formalism

complex Hadamard matrices

projective representations of abelian groups
and generalized Clifford algebras

finite affine and projective geometries

finite fields

number theory
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Problems
mutually unbiased bases:∣∣⟨ei | fj⟩

∣∣2 = 1
N ; finite projective plane

SIC-POVM (Symmetric Informationally Complete Positive Operator Valued

Measure): 1
N

N2−1∑
k=0

|ak⟩⟨ak | = 1,
∣∣⟨ak |aℓ⟩

∣∣2 = 1
N + 1; finite affine plane;

12th Hilbert problem

entanglement in finite QM

quantum tomography

quantum mereology

Wigner and Weyl functions in finite QM

coherent states in finite quantum systems

All this requires computer algebra and computational group theory
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Program for constructing unextendible sets of MUBs

Input:
a set of complex
Hadamard matrices

C program, 3.3GHz PC−−−−−−−−−−−−−−→
N=2,3,...,6,...,10,11

Output:
unextendible sets
of MUBs

Maximal number of MUBs in problematic dimensions: M6 = M10 = 3

Times of hardest tasks: T10 = 1 h 23 min 32 sec, T11 = 9 min 53 sec
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