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Abstract

The method of computing the parametric representation of an orthogonal symplectic matrix is considered.
The dimension of the family of such matrices is calculated. The general structure of matrices of small
even dimensions up to 8 is discussed in detail. A conjecture on the structure of a skew symmetric matrix
generating a generic orthogonal symplectic transformation is formulated. The problem of constructing
an orthogonal symplectic matrix of dimension 4 by a given vector is solved. The application of this
transformation to the study of families of periodic solutions of an autonomous Hamiltonian system with
two degrees of freedom is discussed.
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Intro

Intro (1)

While studying a phase flow of a non-integrable Hamiltonian system, it is usually assumed that
there is some information about its invariant varieties: stationary points, periodic solutions or
invariant tori of different dimensions. In this case, one can compute the normal form of the
system near the corresponding variety and use it to obtain information on the stability of this
variety, local integrability in its vicinity, the nature of bifurcations at small changes of parameters
and, under certain conditions, asymptotically integrate the normalized system of equations.

For studying dynamics near invariant varieties of dimension greater than zero, the normalization
technique is less well developed. Usually we need a special coordinate transformation to simplify
studying of the phase flow.
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Intro

Intro (2)

Autonomous Hamiltonian systems are characterized by the existence of “natural families” of
periodic orbits that are parameterized by the value of the integral of energy. By obtaining
information on at least one periodic solution of the family using the predictor-corrector method,
it is possible to continue along the family.

Successful continuation along the family requires the computation of normal and tangent dis-
placements. Previously, such displacements were computed by reducing the system to Birkhoff
normal form, which implied additional computational cost. Then variants of the method ap-
peared, when at each step of integration along the periodic solution an orthogonal-symplectic
transformation was performed [Karimov, Sokol’skii, 1990], or integration was performed in the
Fresné basis [Lara, Peláez, 2002]. Later, Kreisman [Kreisman, 2005] showed that it is sufficient
apply such a transformation only to the monodromy matrix of the periodic solution.
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Intro

Intro (3)

In presented talk we provide a general algorithm of computation of an generic orthogonal
symplectic matrix (or simply OSM) of any even dimension and gives more precise description
of their structure dimension equals to 4.

All computations in this article are performed using Maple 2023 and Wolfram Mathematica
13.3.
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General form of orthogonal-symplectic matrix

General form of OSM (1)

Hereafter, any boldfaced capital symbol with sub index, e.g. B𝑛 denotes a square real matrix of
dimension 2𝑛× 2𝑛; E𝑛 and E are unit matrices of dimension 𝑛× 𝑛 and 2𝑛× 2𝑛, respectively.
The sign ⊤ denotes the transpose operation of a matrix or vector.

Statement 1.

A skew symmetric 2𝑛× 2𝑛 matrix K𝑛 does not have non-zero real eigenvalues.

It follows that for any skew symmetric matrix K𝑛 the matrices E±K𝑛 are nondegenerate and
invertible.
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General form of orthogonal-symplectic matrix

General form of OSM (2)

According to Cayley’s formula [Gantmacher, 2004, Chap. IX, S 14, n. 2] matrix K𝑛 defines an
orthogonal matrix A𝑛:

A𝑛 = (E+K𝑛) (E−K𝑛)
−1 = 2 (E−K𝑛)

−1 −E, (1)

and A⊤
𝑛A𝑛 = A𝑛A

⊤
𝑛 = E.

The following theorem allows to parametrize an OSM of general form, i.e., a matrix A𝑛 satisfying
the condition of orthogonality and symplecticity simultaneously

A⊤
𝑛A𝑛 = E, A⊤

𝑛 JA𝑛 = J.
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General form of orthogonal-symplectic matrix

General form of OSM (3)

Theorem 1 ([Petrov, 2020]).

A matrix A𝑛 is symplectic if and only if the matrix Ψ𝑛

Ψ𝑛 = −2J(E+A𝑛)
−1(A𝑛 −E), J =

(︂
0 E𝑛

−E𝑛 0

)︂
(2)

is symmetric.

In fact, Theorem 1 allows us to constructively build a matrix A𝑛 that is both orthogonal and
symplectic. Such a class of matrices turns out to be very useful in the study of families of
periodic solutions of Hamiltonian systems, and for critical solutions it allows to determine the
type of bifurcation of the family (for details see [Batkhin, 2020; Kreisman, 2005]).
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General form of orthogonal-symplectic matrix

General form of OSM (4)

The computational scheme according to Theorem 1 can be organized as follows.

1 Define an arbitrary skew symmetric matrix K𝑛 of size 2𝑛×2𝑛, uniquely defined by 𝑛(2𝑛−1)
elements.

2 Compute the orthogonal matrix A𝑛 by Formula (1), which is always possible by virtue of
Statement 1.

3 By Formula (2) we get the expression of the matrix Ψ𝑛 through the matrix K𝑛.
4 Using the symmetry condition Ψ⊤

𝑛 = Ψ𝑛, we obtain a system of relations between the
elements of the matrix K𝑛.

5 According to Theorem 1 the matrix A𝑛 is symplectic.
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General form of orthogonal-symplectic matrix

General form of OSM (5)

Theorem 2.

The number of independent elements of the matrix K𝑛, which defines by Cayley’s formula (1)
the symplectic matrix A𝑛, is equal to 𝑛2. The number of relations between the elements of the
matrix K𝑛 is 𝑛(𝑛− 1).

Proof.
Since the group 𝑆𝑝(2𝑛,R) ∩ 𝑂(2𝑛,R) ∼= 𝑈(𝑛) (see [Kostrikin, Manin, 1989, Ch. 2, § 13]
or [Fomenko, 1995, Ch. 1, § 2.4, Sect. 2]), then the matrix A𝑛 is defined by 𝑛2 independent
elements of the matrix K𝑛 with 𝑛(2𝑛−1) independent elements: 𝑛2 = 𝑛(2𝑛−1)−𝑛(𝑛−1).
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General form of orthogonal-symplectic matrix

General form of OSM (6)

Remark 1.

In [Karimov, Sokol’skii, 1990] it is noted that the problem of building a matrix A𝑛 is equivalent
to the problem of building a nondegenerate continuous tangent vector field on the sphere 𝑆𝑛−1.
As known from Theorem of hedgehog [Arnold, 1992, Chap. 5, Sect. 34, § 3], for spheres of
dimensions 1, 3 and 7 (i.e. for 𝑛 = 2,4,8) it can always be done, and for spheres of other dimen-
sions only by puncturing at least one point on it. The latter means that such a transformation
should have a singularity.
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General form of orthogonal-symplectic matrix Case 𝑛 = 1

OSM for 𝑛 = 1

It follows from Theorem 2 that any skew symmetric 2 × 2 matrix K1 =
(︁

0 𝑘1
−𝑘1 0

)︁
defines a

symplectic matrix

A1 =

⎛⎜⎜⎝
1− 𝑘21
1 + 𝑘21

2𝑘1
1 + 𝑘21

− 2𝑘1
1 + 𝑘21

1− 𝑘21
1 + 𝑘21

⎞⎟⎟⎠ = Rot(𝛼), where Rot(𝛼) =

(︂
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)︂
,

when 𝑘1 = − tan(𝛼/2).

It is a well known fact that any orthogonal 2 × 2 matrix is simultaneously symplectic, i.e.,
according to Theorem 2 there are no additional relations between the elements of the matrix K1.
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

OSM for case 𝑛 = 2 (1)

Let a skew-symmetric matrix K2 be of the form

K2 =

⎛⎜⎜⎝
0 𝑘1 𝑘2 𝑘3

−𝑘1 0 𝑘4 𝑘5
−𝑘2 −𝑘4 0 𝑘6
−𝑘3 −𝑘5 −𝑘6 0

⎞⎟⎟⎠ .

Carrying out the computation of items 1–3, we obtain according to Theorem 2 that for the matrix
A2 to be symplectic, two conditions should be fulfilled:

𝑘4 = 𝑘3, 𝑘6 = 𝑘1.
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

OSM for case 𝑛 = 2 (2)

Hence, we obtain a matrix K2 of the form

K2 =

⎛⎜⎜⎝
0 𝑘1 𝑘2 𝑘3

−𝑘1 0 𝑘3 𝑘5
−𝑘2 −𝑘3 0 𝑘1
−𝑘3 −𝑘5 −𝑘1 0

⎞⎟⎟⎠ =

(︂
B C
−C B

)︂
.

Here B = −B⊤ and C = C⊤.

According to Theorem 2 there is a four-parameter family of OSMs A2. Their structure can be
described as follows.
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

Structure of OSM for 𝑛 = 2 (1)

Let us denote by A
(𝑗)
2 , 𝑗 = 1, . . . ,4, the 𝑗th column of the matrix A2. Then the following

conditions hold.

1 Each column of A(𝑗)
2 is a unit vector.

2 All columns are pairwise orthogonal.

3 A
(𝑗)
2 = JA

(𝑗+2)
2 or A(𝑗+2)

2 = −JA
(𝑗)
2 for 𝑗 = 1,2.

4 Let us put the following notations:

𝑄
def
= 𝑘21 − 𝑘2𝑘5 + 𝑘23, 𝑅

2 def
= 2𝑘21 + 𝑘22 + 2𝑘23 + 𝑘25,
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

Structure of OSM for 𝑛 = 2 (2)

then the first two columns are

A
(1)
2 =

1

𝑑2

⎛⎜⎜⎝
1 + 𝑘25 − 𝑘22 −𝑄2

−2𝑘1(1 +𝑄)− 2𝑘3(𝑘5 + 𝑘2)
−2𝑘2 + 2𝑘5𝑄

−2𝑘3(1 +𝑄) + 2𝑘1(𝑘5 + 𝑘2)

⎞⎟⎟⎠ , A
(2)
2 =

1

𝑑2

⎛⎜⎜⎝
2𝑘1(1 +𝑄)− 2𝑘3(𝑘5 + 𝑘2)

1− 𝑘25 + 𝑘22 −𝑄2

−2𝑘3(1 +𝑄)− 2𝑘1(𝑘5 + 𝑘2)
−2𝑘5 + 2𝑘2𝑄

⎞⎟⎟⎠
(3)

where 𝑑2 = (𝑘2 + 𝑘5)
2 + (1 +𝑄)2 = 𝑅2 +𝑄2 + 1. Here 𝑑2 = det(E−K2).

5 Columns A
(3)
2 and A

(4)
2 are obtained according to the property 3.

Since the denominator 𝑑2 never goes to zero, the matrix A2 is nondegenerate, which agrees with
the above reasoning in Remark 1.
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

Representation OSM as isoclinic rotations (1)

Since the matrix A2 ∈ 𝑆𝑂(4), it defines a rotation in R4. A special case of double rotations
is isoclinic rotations with the same rotation angle 𝛼1 = ±𝛼2. These rotations can be left-
isoclinic, when 𝛼1 = 𝛼2, or right-isoclinic, when 𝛼1 = −𝛼2.

Isoclinic rotation properties
a) a composition of two right (left) isoclinic rotations is a right (left) isoclinic rotation;
b) the composition of right and left isoclinic rotations is commutative.
c) any 4-dimensional rotation can be decomposed into a composition of right and left

isoclinic rotations.
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

Representation OSM as isoclinic rotations (2)

The characteristic polynomial 𝜒A2(𝜆) of the matrix A2 is a reciprocal polynomial due to its
symplectic nature

𝜒A2(𝜆) = 𝜆4 +
4(𝑄2 − 1)

𝑑2
𝜆3 +

2(3𝑄2 −𝑅2 + 3)

𝑑2
𝜆2 +

4(𝑄2 − 1)

𝑑2
𝜆+ 1

and it is factorized by two quadratic trinomials due to the substitution 𝑧 = (𝜆+ 1/𝜆) /2:

𝜒A2(𝜆) =
(︀
𝜆2 − 2𝑧1𝜆+ 1

)︀ (︀
𝜆2 − 2𝑧2𝜆+ 1

)︀
,

where 𝑧1,2 are the roots of the quadratic equation.

𝑧2 +
2(𝑄2 − 1)

𝑑2
𝑧 +

𝑄2 −𝑅2 + 1

𝑑2
= 0. (4)
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

Representation OSM as isoclinic rotations (3)

The discriminant 𝐷 of the polynomial Equation (4) is non-negative and takes the value 0 only
under the condition 𝑘5 = −𝑘2:

𝐷 = 4
(︀
𝑅4 − 4𝑄2

)︀
= 4(𝑘2 + 𝑘5)

2
(︀
4𝑘21 + 4𝑘23 + (𝑘2 + 𝑘5)

2
)︀
⩾ 0.

Since the absolute value of the eigenvalue of the orthogonal matrix is equal to 1, the roots 𝑧1,2
of the equation (4) should belong to the interval [−1;+1]. Then 𝜆𝑗 ∈ 𝑆1, and, for real matrix
A2 they form complex-conjugate pairs 𝜆𝑗 = 𝜆̄𝑗+2 = e𝑖𝛼𝑗 , 𝛼𝑗 ∈ [0; 2𝜋), 𝑗 = 1,2. In generic case
𝛼1 ̸= 𝛼2 and the matrix A2 can be reduced to the form

A2 =

(︂
Rot(𝛼1) 0

0 Rot(𝛼2)

)︂
.
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

Representation OSM as isoclinic rotations (4)

An arbitrary matrix A2 ∈ 𝑆𝑂(4) can be represented as a composition of left-isoclinic and right-
isoclinic rotations

A2 =

⎛⎜⎜⎝
𝑎 −𝑏 −𝑐 −𝑓
𝑏 𝑎 −𝑓 𝑐
𝑐 𝑓 𝑎 −𝑏
𝑓 −𝑐 𝑏 𝑎

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
𝑝 −𝑞 −𝑟 −𝑠
𝑞 𝑝 𝑠 −𝑟
𝑟 −𝑠 𝑝 𝑞
𝑠 𝑟 −𝑞 𝑝

⎞⎟⎟⎠ ,

where 𝑎2+ 𝑏2+ 𝑐2+ 𝑓2 = 𝑝2+ 𝑞2+ 𝑟2+ 𝑠2 = 1, by so-called Cayley decomposition [Thomas,
2014].
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General form of orthogonal-symplectic matrix Case 𝑛 = 2

Representation OSM as isoclinic rotations (5)

According to this algorithm, the matrix A2 can be represented as A2 = A𝐿 · A𝑅, where the
matrices A𝐿 and A𝑅 are the following

A𝐿 =
1

𝑑

⎛⎜⎜⎝
1−𝑄 2𝑘1 𝑘2 − 𝑘5 2𝑘3
−2𝑘1 1−𝑄 2𝑘3 −𝑘2 + 𝑘5

−𝑘2 + 𝑘5 −2𝑘3 1−𝑄 2𝑘1
−2𝑘3 𝑘2 − 𝑘5 −2𝑘1 1−𝑄

⎞⎟⎟⎠ ,

A𝑅 =
1

𝑑

⎛⎜⎜⎝
𝑄+ 1 0 𝑘2 + 𝑘5 0

0 𝑄+ 1 0 𝑘2 + 𝑘5
−𝑘2 − 𝑘5 0 𝑄+ 1 0

0 −𝑘2 − 𝑘5 0 𝑄+ 1

⎞⎟⎟⎠ .
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General form of orthogonal-symplectic matrix General structure of an arbitrary OSM

General structure of an arbitrary OSM (1)

Generalizing the computations performed for cases 𝑛 = 1,2,3,4, we can formulate the following

Conjecture 1.

If a skew symmetric matrix K𝑛 has the form

K𝑛 =

(︂
B C

−C⊤ D

)︂
, B⊤ = −B, D⊤ = −D,

then the matrix Ψ𝑛 = −2J(E+A𝑛)
−1(E−A𝑛) has the following form Ψ𝑛 = −2

(︂
C⊤ D⊤

B C

)︂
,

where A𝑛 = (E+K𝑛)(E−K𝑛)
−1.
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General form of orthogonal-symplectic matrix General structure of an arbitrary OSM

General structure of an arbitrary OSM (2)

It follows from Conjecture 1 that in order for the matrix Ψ𝑛 to be symmetric, the conditions
C = C⊤ and B = D should be satisfied. Thus, according to Theorem 1, the following statement
is obtained:

Statement 2.

If a skew-symmetric matrix K𝑛 is a block matrix K𝑛 =

(︂
B C
−C B

)︂
, with B is a skew symmetric

𝑛×𝑛 matrix of 𝑛(𝑛−1)/2 independent elements and C is a symmetric 𝑛×𝑛 matrix of 𝑛(𝑛+1)/2
independent elements, then the matrix A𝑛 = (E + K𝑛)(E − K𝑛)

−1 is a generic orthogonal
symplectic matrix of 𝑛2 independent elements.
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Some application of parametric representation

Some application of parametric representation (1)

In applications, it is usually required to use the computed symplectic matrix M𝑛 of some periodic
solution to a Hamiltonian system to construct an OSM matrix A𝑛 that simplifies M𝑛.

Problem 1.

Let a monodromy matrix M2 of a periodic solution z(𝑡, z0) with period 𝑇 of an autonomous
Hamiltonian system with two degrees of freedom be known. Find such a transformation with an
OSM Ã2 that reduces the matrix M2 to a simpler form.

For autonomous system the column Ã
(1)
2 is the normalized phase velocity vector v0. To complete

the construction of the desired matrix, we need to be able to express the elements of the second
column Ã

(2)
2 through the elements of the first column.
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Some application of parametric representation

Some application of parametric representation (2)

Steps of solution

1 The numerators of the elements of the vector Ã
(1)
2 are used to compose an ideal and its

Gröbner basis J with some monomial order.
2 The reminders of the numerators of the second column of Ã(2)

2 modulo ideal J are computed
and they form a new polynomial system.

3 Solving the system obtained at the previous step one get additional conditions on the pa-
rameters 𝑘1, 𝑘2, 𝑘3, 𝑘5, which guarantee that the column Ã

(2)
2 can be expressed through the

components of the column Ã
(1)
2 .

The computations performed using the above scheme lead to two sets of conditions. Condition
1 leads to a 3-parameter family of OSMs, and Condition 2 leads to a one-parameter family of
OSMs.
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Some application of parametric representation

Some application of parametric representation (3)

Condition 1 is 𝑘5 = −𝑘2, and the other variables are free. Then the values of 𝑄 and 𝑅 take
the values 𝑄̃ = 𝑘21+𝑘22+𝑘23, 𝑅̃

2 = 2𝑄̃, and Formulas (3) for the first two columns of the matrix
Ã2 take the form of

Ã
(1)
2 =

1

𝑑

⎛⎜⎜⎝
1− 𝑄̃
−2𝑘1
−2𝑘2
−2𝑘3

⎞⎟⎟⎠ , Ã
(2)
2 =

1

𝑑

⎛⎜⎜⎝
2𝑘1

1− 𝑄̃
−2𝑘3
2𝑘2

⎞⎟⎟⎠ , 𝑑 = 1 + 𝑄̃.
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Some application of parametric representation

Some application of parametric representation (4)

Earlier, the matrix Ã2 was proposed by Kreisman in a series of papers devoted to orbit design
for the “Radioastron” project:

Ã2 =

⎛⎜⎜⎝
𝐻3 −𝐻4 𝐻1 𝐻2

𝐻4 𝐻3 𝐻2 𝐻1

−𝐻1 −𝐻2 𝐻3 −𝐻4

−𝐻2 𝐻1 𝐻4 𝐻3

⎞⎟⎟⎠ ,

where Ã
(3)
2 = (𝐻1, 𝐻2, 𝐻3, 𝐻4) is the normalized vector grad𝐻(z0).
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Some application of parametric representation

Solution to continuation equation (1)

Let us show how the transformation with the matrix Ã2 simplifies the monodromy matrix M2

of a periodic solution.

Let some nondegenerate periodic solution z(𝑡, z0) of a family with initial condition z0 and period
𝑇 be known. If the parameters of the periodic solution vary smoothly along the family, in a
generic case, there is a periodic solution z(𝑡) + 𝛿z(𝑡) with period 𝑇 + 𝛿𝑇 near the generic case.

(M2 −E)𝛿z(𝑇 ) + v0𝛿𝑇 = 0, (5)

where v0 = J grad𝐻(z(𝑇, z0)).
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Some application of parametric representation

Solution to continuation equation (2)

The transformation M2 → Ã⊤
2 MÃ2 reduces [Kreisman, 2005] the matrix M to a symplectic

matrix N2 of the form

N2 =

⎛⎜⎜⎝
1 𝑛12 𝑛13 𝑛14

0 𝑛22 𝑛23 𝑛24

0 0 1 0
0 𝑛42 𝑛43 𝑛44

⎞⎟⎟⎠ .

The stability index 𝑆 of the periodic solution is 𝑆 = (𝑛22 + 𝑛44)/2.
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Some application of parametric representation

Solution to continuation equation (3)

Substitution 𝛿𝜁 = Ã2𝛿z reduces System (5) into

(N2 −E)𝛿𝜁(𝑇 ) + 𝑣0𝛿𝑇 Ã
(1)
2 = 0,

which has a general solution

𝛿𝜁 = 𝑐1Ã
(1)
2 + 𝛿𝜁′, 𝛿𝑇 = −1

𝑣

4∑︁
𝑗=2

𝑛1𝑗𝛿𝜁
′
𝑗 ,

and the vector 𝛿𝜁′ is orthogonal to the vector Ã(1)
2 .

So 𝛿𝜁′ specifies the displacement along the family of periodic orbits and Ã
(1)
2 specifies the

displacement along the periodic solution.
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