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Abstract

In the classical problem of motion of a rigid body around a fixed point described by the Euler-
Poisson system, new cases of global integrability are found. For one of these cases, generalizing
the Kovalevskaya case, a fourth global integral is proposed.



1. Introduction (1)

The Euler-Poisson equations (1750) are a real autonomous system of six ordinary differ-
ential equations (ODEs).

𝐴𝑝′ + (𝐶 −𝐵)𝑞𝑟 = 𝑀𝑔 (𝑦0𝛾3 − 𝑧0𝛾2) ,

𝐵𝑞′ + (𝐴− 𝐶)𝑝𝑟 = 𝑀𝑔 (𝑧0𝛾1 − 𝑥0𝛾3) ,

𝐶𝑟′ + (𝐵 −𝐴)𝑝𝑞 = 𝑀𝑔 (𝑥0𝛾2 − 𝑦0𝛾1) ,

𝛾′1 = 𝑟𝛾2 − 𝑞𝛾3, 𝛾′2 = 𝑝𝛾3 − 𝑟𝛾1, 𝛾′3 = 𝑞𝛾1 − 𝑝𝛾2,

(1)

with dependent variables 𝑝, 𝑞, 𝑟, 𝛾1, 𝛾2, 𝛾3 and parameters 𝐴,𝐵,𝐶, 𝑥0, 𝑦0, 𝑧0, satisfying
the triangle inequalities

0 < 𝐴 ⩽ 𝐵 + 𝐶, 0 < 𝐵 ⩽ 𝐴+ 𝐶, 0 < 𝐶 ⩽ 𝐴+𝐵. (2)



1. Introduction (2)

Here, the prime indicates differentiation over independent variable time 𝑡, 𝑀𝑔 is the
weight of the body, 𝐴,𝐵,𝐶 are the principal moments of inertia of the rigid body,
𝑥0, 𝑦0, 𝑧0 are the coordinates of the center of gravity of the rigid body, 𝛾1, 𝛾2, 𝛾3 are the
vertical directional cosines.

The system (1) describes the motion of a spinner around a fixed point [Golubev, 1960]
and has three first integrals: energy, momentum, and geometric:

𝐼1
def
= 𝐴𝑝2 +𝐵𝑞2 + 𝐶𝑟2 − 2𝑀𝑔 (𝑥0𝛾1 + 𝑦0𝛾2 + 𝑧0𝛾3) = ℎ = const,

𝐼2
def
= 𝐴𝑝𝛾1 +𝐵𝑞𝛾2 + 𝐶𝑟𝛾3 = 𝑙 = const,

𝐼3
def
= 𝛾21 + 𝛾22 + 𝛾23 = 1.

(3)



1. Introduction (3)

The system is integrable if there is a fourth general integral 𝐼4. So far, 4 cases of
integrability are known:

Case 1. Euler-Poinsot: 𝑥0 = 𝑦0 = 𝑧0 = 0 and 𝐼4
def
= 𝐴2𝑝2 +𝐵2𝑞2 + 𝐶2𝑟2 = const.

Case 2. Lagrange-Poisson 𝐵 = 𝐶, 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0, and 𝐼4
def
= 𝑝 = const.

Case 3. Kovalevskaya (1890): 𝐴 = 𝐵 = 2𝐶, 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0, and

𝐼4
def
=

(︀
𝑝2 − 𝑞2 + 𝑐𝛾1

)︀2
+ (2𝑝𝑞 + 𝑐𝛾2)

2 = const, (4)

where 𝑐 = 𝑀𝑔𝑥0/𝐶.

Case 4. Kinematic symmetry: 𝐴 = 𝐵 = 𝐶 and 𝐼4
def
= 𝑥0𝑝+ 𝑦0𝑞 + 𝑧0𝑟 = const. It is

derived from case 2.



2. Results (1)

We found the following cases of integrability of the system (1).

Case 5: 𝐴 = 𝐵 = 2𝐶, 𝑥0 ̸= 0, 𝑦0 ̸= 0, 𝑧0 = 0. Then the fourth integral has the
form

𝐼4
def
=

(︀
𝑝2 − 𝑞2 + 𝑐𝛾1 − 𝑑𝛾2

)︀2
+ (2𝑝𝑞 + 𝑑𝛾1 + 𝑐𝛾2)

2 = const, (5)

where 𝑐 = 𝑀𝑔𝑥0/𝐶, 𝑑 = 𝑀𝑔𝑦0/𝐶. This is a generalization of Ko-
valevskaya’s case 3 and her fourth integral (4). As for cases 1–4 the fourth
integral (5) is independent of the integrals (3).

Case 6: 𝐵 = 𝐶, 𝐴2 (𝐴− 2𝐵)𝑥20 = 𝐵 (2𝐴−𝐵)2 𝑦20, 𝑧0 = 0.



2. Results (2)

For case 6, the inequalities of triangle (2) are not satisfied. For case 6, the additional
fourth integral 𝐼4 was not written out, and local integrability was checked near the
corresponding fixed points for third-order resonances. According to [Bruno, 2007, Section
5.3] the coefficients of the resonance terms of the normal form at 2 : 1 resonance should
be zero in integrable cases. In this case they are zero in some subcases and in other
subcases are non zero.



3. Theory (1)

We have found some general property of integrable cases 1–4, which is formulated below
as Hypothesis 2. So we have to compute all those values of parameters 𝐴,𝐵,𝐶, 𝑥0, 𝑦0, 𝑧0
for which this property is satisfied. And then, by computing the resonance terms of the
normal form of the system (1), to extract from them those values at which the system (1)
is integrable.

Hypothesis 1 [Edneral, 2023]

If an autonomous polynomial ODE system is locally integrable in the neighborhood of all
its stationary points, then it is globally integrable.

Therefore, to find global integrability, we must first find all the stationary points of
the ODE system, and then find out whether the system is locally integrable in their
neighborhoods.



3. Theory (2)

Let 𝑋 = (𝑝, 𝑞, 𝑟, 𝛾1, 𝛾2, 𝛾3), the point 𝑋 = 𝑋0 is a stationary point in the system (1) and
𝑀 is a matrix of the linear part of the system (1) near the point 𝑋0. The characteristic
polynomial 𝜒(𝜆) of the matrix 𝑀 is 𝜒(𝜆) = 𝜆6 + 𝑎4𝜆

4 + 𝑎2𝜆
2. Its discriminant

𝐷𝜆(𝜒) = 𝑎24 − 4𝑎2 (6)

is a rational function 𝐷 = 𝐺/𝐻, where 𝐺 and 𝐻 are polynomials.

A stationary point is locally integrable [Bruno, 2007] if 𝑎2 < 0 or 𝐷𝜆(𝜒) < 0. But this
property is not satisfied for definite values of the system parameters (1).

The stationary points of the system (1) form one-dimensional and two-dimensional fam-
ilies ℱ 𝑙

𝑗 in R6.



3. Theory (3)

Hypothesis 2

If near a stationary point 𝑋0 of the family ℱ 𝑙
𝑗 the system (1) is locally integrable, then

at these parameter values the second discriminant ∆
(︁
ℱ 𝑙
𝑗

)︁
of the numerator 𝐺 of the

first discriminant 𝐷𝜆(𝜒) on the parameter of the family ℱ 𝑙
𝑗 is zero.

Considering Hypothesis 1, now the search for integrable cases consists of the following 5
steps.

Step 1 Fix the number 𝑙 of non-zero parameters 𝑥0, 𝑦0, 𝑧0 and find all families ℱ 𝑙
𝑗 of sta-

tionary points.

Step 2 Compute the discriminants (6) 𝐷𝜆(𝜒) on the families ℱ 𝑙
𝑗 .

Step 3 On families ℱ 𝑙
𝑗 , compute the second discriminants ∆

(︁
ℱ 𝑙
𝑗

)︁
of the numerators 𝐺 of

the first discriminants 𝐷.



3. Theory (4)

Step 4 Find the values of the parameters of the system (1) at which all ∆
(︁
ℱ 𝑙
𝑗

)︁
= 0 at

fixed 𝑙.

Step 5 Check the obtained parameter values for integrability by computing the normal forms
of the system (1) near stationary points or by finding the fourth integral.



4. Computations (1)

Organization of computations
All the computations described in Section “Theory” were implemented in the CAS Maple.
Two different situations had to be implemented separately.

1 If for a family of stationary points it was possible to describe analytically the set
of eigenvalues of the characteristic equation of the matrix 𝑀 as a function of a
parameter, then the normal form of the Euler-Poisson system (1) was computed
analytically for the whole family.

2 If it was not possible to do so, then, after preliminary simplification of the obtained
expressions, the parameter variation interval was set, the set of points on this inter-
val was determined, other parameters of the system were calculated and then the
numerical normalization procedure was performed. Such calculations were carried
out using a high precision arithmetic with 30 decimal places. At each step, interme-
diate checks of significance of the obtained results were performed.



4. Computations (2)
4.1. Case 𝑙 = 0 : 𝑥0 = 𝑦0 = 𝑧0 = 0

Then the system (1) has 3 families of stationary points:

ℱ0
1 : {𝑞 = 𝑟 = 0, 𝛾1 = 𝑝/𝑘 = ±1, 𝛾2 = 𝛾3 = 0}, 𝑝 is a parameter;

ℱ0
2 : {𝑝 = 𝑟 = 0, 𝛾2 = 𝑞/𝑘 = ±1, 𝛾1 = 𝛾3 = 0}, 𝑞 is a parameter;

ℱ0
3 : {𝑝 = 𝑞 = 0, 𝛾3 = 𝑟/𝑘 = ±1, 𝛾1 = 𝛾2 = 0}, 𝑟 is a parameter.

They all have ∆(ℱ0
𝑗 ) ≡ 0 on them, so the system (1) is integrable (Case 1).



4. Computations (3)

4.2 Case 𝑙 = 1 : 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0

Then the system (1) has 4 families of stationary points:

ℱ1
1 : {𝑞 = 𝑟 = 0, 𝛾1 = 𝑝/𝑘 = ±1, 𝛾2 = 𝛾3 = 0, 𝐵 ̸= 𝐶}, 𝑝 is a parameter;

ℱ1
2 :

{︂
𝑝 =

𝑥0
𝑘(𝐶 −𝐴)

, 𝑞 = 0, 𝛾1 = 𝑝/𝑘, 𝛾2 = 0, 𝛾3 = 𝑠/𝑘, 𝛾21 + 𝛾23 = 1, 𝐴 ̸= 𝐶 ̸= 𝐵

}︂
,

𝑟 is a parameter;

ℱ1
3 :

{︂
𝑝 =

𝑥0
𝑘(𝐵 −𝐴)

, 𝑟 = 0, 𝛾1 = 𝑝/𝑘, 𝛾2 = 𝑞/𝑘, 𝛾3 = 0, 𝛾21 + 𝛾22 = 1, 𝐴 ̸= 𝐵 ̸= 𝐶

}︂
,

𝑞 is a parameter;

ℱ1
4 :

{︂
𝑝 =

𝑥0
𝑘(𝐵 −𝐴)

, 𝛾1 = 𝑝/𝑘, 𝛾2 = 𝑞/𝑘, 𝛾3 = 𝑟/𝑘, 𝛾21 + 𝛾22 + 𝛾23 = 1, 𝐴 ̸= 𝐵 = 𝐶

}︂
,

𝑞, 𝑟 are parameters.



4. Computations (4)

4.2 Case 𝑙 = 1 : 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0

For the family ℱ1
1 the second discriminant is

∆(ℱ1
1 ) = 4096 (𝐵 − 𝐶)2 (𝐴− 2𝐶)2 (𝐴− 2𝐵)2 (𝐴−𝐵 − 𝐶)6𝐶2𝐵2𝐴2𝑥60.



4. Computations (5)

For the family ℱ1
2 , the second discriminant is

∆(ℱ1
2 ) = 4294967296 (𝐵 − 𝐶)4 (𝐴− 2𝐶)8 (𝐴− 𝐶)42 (𝐴+𝐵 − 𝐶)14(︀

𝐴5 − 4𝐴4𝐵 − 4𝐴4𝐶 + 4𝐴3𝐵2 + 10𝐴3𝐵𝐶 + 8𝐴3𝐶2 − 16𝐴2𝐵2𝐶+

2𝐴2𝐵𝐶2 − 10𝐴2𝐶3 + 21𝐴𝐵2𝐶2 − 20𝐴𝐵𝐶3 + 7𝐴𝐶4 − 10𝐵2𝐶3 + 12𝐵𝐶4 − 2𝐶5
)︀8(︀

𝐴4 − 4𝐴3𝐵 − 2𝐴3𝐶 + 4𝐴2𝐵2 + 2𝐴2𝐵𝐶 + 3𝐴2𝐶2 − 8𝐴𝐵2𝐶+

10𝐴𝐵𝐶2 − 2𝐴𝐶3 +𝐵2𝐶2 − 2𝐵𝐶3 + 𝐶4
)︀3(︀

𝐴2 − 2𝐴𝐵 − 2𝐴𝐶 + 3𝐵𝐶 + 𝐶2
)︀12

𝐴28𝐵4𝐶20𝑥280 .



4. Computations (6)

4.2. Case 𝑙 = 1 : 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0

For the family ℱ1
3 , the second discriminant is

∆(ℱ1
3 ) = 4294967296 (𝐵 − 𝐶)4 (𝐴− 2𝐵)8 (𝐴−𝐵)42 (𝐴−𝐵 + 𝐶)14(︀
𝐴5 − 4𝐴4𝐵 − 4𝐴4𝐶 + 8𝐴3𝐵2 + 10𝐴3𝐵𝐶 + 4𝐴3𝐶2 − 10𝐴2𝐵3 + 2𝐴2𝐵2𝐶

−16𝐴2𝐵𝐶2 + 7𝐴𝐵4 − 20𝐴𝐵3𝐶 + 21𝐴𝐵2𝐶2 − 2𝐵5 + 12𝐵4𝐶 − 10𝐵3𝐶2
)︀8(︀

𝐴4 − 2𝐴3𝐵 − 4𝐴3𝐶 + 3𝐴2𝐵2 + 2𝐴2𝐵𝐶 + 4𝐴2𝐶2 − 2𝐴𝐵3+

10𝐴𝐵2𝐶 − 8𝐴𝐵𝐶2 +𝐵4 − 2𝐵3𝐶 +𝐵2𝐶2
)︀3(︀

𝐴2 − 2𝐴𝐵 − 2𝐴𝐶 +𝐵2 + 3𝐵𝐶
)︀12

𝐴28𝐵20𝐶4𝑥280 .

For the family ℱ1
4 , the second discriminant is ∆(ℱ1

4 ) ≡ 0.



4. Computations (7)

4.2 Case 𝑙 = 1 : 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0

All these second discriminants are 0 when:
1 𝐵 = 𝐶 – Case 2.
2 𝐴 = 𝐵 = 2𝐶 – Case 3.
3 𝐴 = 2𝐶, 𝐵 = 3𝐶.
4 𝐴 = 2𝐶, 𝐵 = 𝛿𝐶, where 𝛿 is the root of the equation 𝛿3 − 12𝛿2 + 33𝛿 − 24 = 0,

i.e., 𝛿1 ≈ 1,194, 𝛿2 ≈ 2,387, 𝛿3 ≈ 8,419.
But the check shows that there is no local integrability in items 3 and 4.



4. Computations (8)

4.3 Case 𝑙 = 2 : 𝑥0 ̸= 0, 𝑦0 ̸= 0, 𝑧0 = 0

Then the system (1) has 2 families of stationary points:

ℱ2
1 :

{︂
𝑝 =

𝑥0
𝑘(𝐶 −𝐴)

, 𝑞 =
𝑦0

𝑘(𝐶 −𝐵)
, 𝛾1 = 𝑝/𝑘, 𝛾2 = 𝑞/𝑘, 𝛾3 = 𝑟/𝑘,

𝛾21 + 𝛾22 + 𝛾23 = 1, 𝐴 ̸= 𝐶 ̸= 𝐵
}︀
, 𝑟 is a parameter;

ℱ2
2 :

{︂
𝑝 = − 𝑥0

𝑘(𝐴+ 𝑇 )
, 𝑞 = − 𝑦0

𝑘(𝐵 + 𝑇 )
, 𝑟 = 0, 𝛾1 = 𝑝/𝑘, 𝛾2 = 𝑞/𝑘, 𝛾3 = 0,

𝛾21 + 𝛾22 = 1
}︀
, 𝑇 is a parameter;



4. Computations (9)

4.3 Case 𝑙 = 2 : 𝑥0 ̸= 0, 𝑦0 ̸= 0, 𝑧0 = 0

For the family ℱ2
1 , the second discriminant is

∆(ℱ2
1 ) = 4096 (𝐵 − 𝐶)16 (𝐴− 𝐶)16 (𝐴+𝐵 − 𝐶)6𝐴2𝐵2𝐶8(︀

𝐴 (𝐵 − 𝐶)𝑥20 +𝐵 (𝐴− 𝐶) 𝑦20
)︀2 (︁

(𝐵 − 𝐶)2 (𝐴− 2𝐶)2 𝑥20 + (𝐵 − 2𝐶)2 (𝐴− 𝐶)2 𝑦20

)︁2

(︁
𝐴 (𝐵 − 𝐶)2

(︀
𝐴2 − 2𝐴𝐵 − 2𝐶𝐴+ 3𝐵𝐶 + 𝐶2

)︀
𝑥20−

𝐵 (𝐴− 𝐶)2
(︀
2𝐴𝐵 − 3𝐶𝐴−𝐵2 + 2𝐵𝐶 − 𝐶2

)︀
𝑦20

)︁2
.

The second discriminant ∆(ℱ2
2 ) was obtained during the computation, but we could

not factorize it because it contains several hundred thousand monomials. Therefore, we
computed ∆(ℱ2

2 ) on the zeros of ∆(ℱ2
1 ). We get the following results.



4. Computations (10)

When 𝐵 = 𝐶

∆(ℱ2
2 ) = 4096 (𝐴−𝐵)18 (𝐴− 2𝐵)6𝐴10𝐵14𝑥120 𝑦140 𝑓1(𝑇 )𝑓2(𝑇 ),

where
𝑓1(𝑇 ) =

(︁
𝐴2 (𝐴− 2𝐵)𝑥20 −𝐵 (2𝐴−𝐵)2 𝑦20

)︁2
,



4. Computations (11)

𝑓2(𝑇 ) = 16𝐴6 (𝐴− 2𝐵)10 𝑥100 −
(︀
55𝐴8−446𝐴7𝐵+901𝐴6𝐵2−1740𝐴5𝐵3+2521𝐴4𝐵4−

1782𝐴3𝐵5 + 875𝐴2𝐵6 − 592𝐴𝐵7 + 128𝐵8
)︀
𝐴4 (𝐴− 2𝐵)4 𝑥80𝑦

2
0−(︀

69𝐴11−1472𝐴10𝐵+11813𝐴9𝐵2−35619𝐴8𝐵3+65349𝐴7𝐵4−82131𝐴6𝐵5+68141𝐴5𝐵6−
35361𝐴4𝐵7 + 11266𝐴3𝐵8 − 2097𝐴2𝐵9 + 194𝐴𝐵10 + 8𝐵11

)︀
𝐴2 (𝐴− 2𝐵)3 𝑥60𝑦

4
0+(︀

2𝐴13+583𝐴12𝐵−11264𝐴11𝐵2+70104𝐴10𝐵3−198026𝐴9𝐵4+340960𝐴8𝐵5−413616𝐴7𝐵6+

368453𝐴6𝐵7−235180𝐴5𝐵8+101982𝐴4𝐵9−27652𝐴3𝐵10+4011𝐴2𝐵11−184𝐴𝐵12−13𝐵13
)︀
×

𝐴 (𝐴− 2𝐵)2 𝑥40𝑦
6
0−(︀

2𝐴14+159𝐴13𝐵−3147𝐴12𝐵2+18138𝐴11𝐵3−48400𝐴10𝐵4+73601𝐴9𝐵5−69996𝐴8𝐵6+

43080𝐴7𝐵7−17055𝐴6𝐵8+4188𝐴5𝐵9−604𝐴4𝐵10+29𝐴3𝐵11+26𝐴2𝐵12−13𝐴𝐵13+2𝐵14
)︀
×

8𝐵 (𝐴− 2𝐵)𝑥20𝑦
8
0 + 16𝐵2𝐴 (2𝐴−𝐵)

(︀
𝐴2 +𝐴𝐵 −𝐵2

)︀6
𝑦100 .



4. Computations (12)

4.3. Case 𝑙 = 2 : 𝑥0 ̸= 0, 𝑦0 ̸= 0, 𝑧0 = 0

Therefore, both ∆ are zero at
∙ 𝐴 = 𝐵 = 𝐶 (Case 4),
∙ 𝐵 = 𝐶 and 𝐴2(𝐴− 2𝐵)𝑥20 = 𝐵(2𝐴−𝐵)2𝑦20 (new Case 6),
∙ 𝐴 = 2𝐵 = 2𝐶.

Checking shows that the last case is non-integrable.
In the last moment according to new more accurate computations the integrability in
Case 6 could not be approved.

With 𝐴 = 𝐵

∆(ℱ2
2 ) = −4𝐴2𝐶3(𝐴− 2𝐶).

Therefore, when 𝐴 = 𝐵 = 2𝐶, both ∆ are zero. This is new Case 5.



4. Computations (13)

4.4 Case 𝑙 = 3 : 𝑥0 ̸= 0, 𝑦0 ̸= 0, 𝑧0 ̸= 0

Then the system (1) has one family of stationary points:

ℱ3
1 :

{︂
𝑝 = − 𝑥0

𝑘(𝐴+ 𝑇 )
, 𝑞 = − 𝑦0

𝑘(𝐵 + 𝑇 )
, 𝑟 = − 𝑧0

𝑘(𝐶 + 𝑇 )
,

𝛾1 = 𝑝/𝑘, 𝛾2 = 𝑞/𝑘, 𝛾3 = 𝑟/𝑘, 𝛾21 + 𝛾22 = 1
}︀
,

𝑇 is a parameter;

The first discriminant 𝐷𝜆(𝜒) is a 10th degree polynomial of 𝑇 . To compute its discrimi-
nant on 𝑇 in the generic case it is impossible (discriminant contains 133881 monomials).
But when 𝐴 = 𝐵 = 𝐶 (Case 4) it is zero. When 𝐴 = 𝐵 = 2𝐶, the second discriminant
∆(ℱ3

1 ) = 384𝐴2
(︀
𝑥20 + 𝑦20

)︀4 ̸= 0. According to Conjecture 2, this is the non-integrable
case.



4. Computations (14)

So here as for the case of ℱ2
2 we should look for other methods of computing discriminants

or more powerful computers as well.
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