On the integrability of two- and three-dimensional dynamical systems with a quadratic right-hand side in cases of resonances in linear parts and in cases of general position

Victor Edneral

Skobeltsyn Institute of Nuclear Physics of
Lomonosov Moscow State University
April 17, 2024

Integrability of ODEs

Let us see the autonomous ODE system

$$
\frac{d x_{i}}{d t}=\phi_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n .
$$

Perhaps it has m independent functions of system variables $I_{k}\left(x_{1}, \ldots, x_{n}\right)$ such that complete differentiation with respect to the independent variable t is equal to zero along trajectories in the phase space of the system. We will talk about these functions as the first integrals of this system

$$
\left.\frac{d l_{k}\left(x_{1}, \ldots, x_{n}\right)}{d t}\right|_{\frac{d x_{i}}{d t}=\phi_{i}\left(x_{1}, \ldots, x_{n}\right)}=0, \quad k=1, \ldots, m .
$$

- The system can have m first integrals. We will say the system is integrable if it has enough of such (real?) integrals.
- For integrability of an autonomous two-dimensional system, it is enough to have a single integral.

Simple Example

- Let us see the equation of the harmonic oscillator

$$
\ddot{x}(t)+\omega_{0}^{2} x(t)=0
$$

- This equation is equivalent to the system

$$
\left\{\begin{array}{l}
\dot{x}(t)=y(t), \tag{1}\\
\dot{y}(t)=-\omega^{2} x(t) .
\end{array}\right.
$$

- The first integral of this system is

$$
I(x(t), y(t))=x^{2}(t)+y^{2}(t) / \omega_{0}^{2}
$$

- Due to (1) its full derivation in time is zero

$$
\begin{aligned}
\frac{d I(x(t), y(t))}{d t} & =2 x(t) \dot{x}(t)+2 y(t) \dot{y}(t) / \omega_{0}^{2}= \\
& =2 x(t) y(t)-2 x(t) y(t)=0
\end{aligned}
$$

Solution

Due to the constancy of the first integral

$$
I(x(t), y(t))=x^{2}(t)+y^{2}(t) / \omega_{0}^{2}=C_{1}^{2}
$$

we evaluate $y(t)$ as a function of $x(t)$

$$
y(t)= \pm \omega_{0}^{2} \sqrt{C_{1}^{2}-x^{2}(t)}
$$

By substituting $y(t)$ in system (1) we get the autonomous equation of the first order

$$
\frac{d x(t)}{d t}= \pm \omega_{0}^{2} \sqrt{C_{1}^{2}-x^{2}(t)}
$$

or

$$
\pm \frac{d x(t)}{\omega_{0}^{2} \sqrt{C_{1}-x^{2}(t)}}=d t, \quad \text { i.e. } x(t)= \pm C_{1} \cdot \sin \left(\omega_{0} t+C_{2}\right)
$$

- Integrability is an important property of the system. In particular, if a system is integrable then it is solvable by quadrature.
- Knowledge of first integrals is also important for studying the phase portrait, bifurcation analysis, constructing symplectic integration schemes, etc.

Phase Portrait near Stationary Points

Рнс. 17.17. Особые точин на фазовой плоскости; а) центр, б) седло; я) фокус (устоачнвый).
 циклы (устодчивый и неустоДчнвый). Об устоачивости и неустоАчквостн см. ннже.

Center Case

Bautin's System, Center-Focus Case:

$$
\begin{aligned}
& \mathrm{x}^{\prime}(\mathrm{t})=\mathrm{y}(\mathrm{t})+\mathrm{x}(\mathrm{t})^{\wedge} 2+\mathrm{x}(\mathrm{t})^{*} \mathrm{y}(\mathrm{t})+\mathrm{y}(\mathrm{t})^{\wedge} 2 \\
& \mathrm{y}^{\prime}(\mathrm{t})=-\mathrm{x}(\mathrm{t})+\mathrm{x}(\mathrm{t})^{\wedge} 2+\mathrm{x}(\mathrm{t})^{*} \mathrm{y}(\mathrm{t})+\mathrm{y}(\mathrm{t})^{\wedge} 2 \\
& \mathrm{x}(0)=0, \mathrm{y}(0)=0.1,0.11,0.12
\end{aligned}
$$

Center:

The level line is closed near a local extremum of the real first integral

Focus Case

$$
\begin{aligned}
& \text { Bautin's System, Center-Focus Case: } \\
& x^{\prime}(t)=y(t)+x(t)^{\wedge} 2+x(t)^{\star} y(t)+y(t)^{\wedge} 2 \\
& y^{\prime}(t)=-x(t)+x(t)^{\wedge} 2+x(t)^{*} y(t)+2^{\star} y(t)^{\wedge} 2 \\
& x(0)=0, y(0)=0.1
\end{aligned}
$$

Weak Focus

Integrable Saddle Case

Bautin Saddle Integrable System (B6)

$$
\begin{aligned}
& \mathrm{x}^{\prime}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{x}(\mathrm{t})^{*} \mathrm{y}(\mathrm{t})+\mathrm{y}(\mathrm{t})^{\wedge} 2 \\
& \mathrm{y}^{\prime}(\mathrm{t})=-\mathrm{y}(\mathrm{t})+\mathrm{x}(\mathrm{t})^{\wedge} 2+1 / 2^{*} \mathrm{y}(\mathrm{t})^{\wedge} 2 \\
& \mathrm{x} 0=-0.1, \mathrm{y} 0=0 \\
& 2001
\end{aligned}
$$

Non-integrable Saddle Case

Bautin Saddle non-Integrable System (B6)

$$
\begin{aligned}
& \mathrm{x}^{\prime}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{x}(\mathrm{t})^{*} \mathrm{y}(\mathrm{t})+\mathrm{y}(\mathrm{t})^{\wedge} 2 \\
& \mathrm{y}^{\prime}(\mathrm{t})=-\mathrm{y}(\mathrm{t})+\mathrm{x}(\mathrm{t})^{\wedge} 2+1 / 2.01^{*} \mathrm{y}(\mathrm{t})^{\wedge} 2 \\
& \mathrm{x}(0)=-0.1, \mathrm{y}(0)=0
\end{aligned}
$$

1:

Problem

- Generally, integrability is a rare property.
- But the system may depend on parameters.
- Our task here is to find the values of system parameters at which the system is integrable.

Kamke's Book

Г Л A B A IX

СИСТЕМЫ НЕЛИНЕИННХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

1-17. Системы двух дифференциальных уравнений

$9.1 \quad x=-x(x+y), y^{\prime}=y(x+y)$.
ИЗ этпх уравнений получаем $y x^{\prime}+x y^{\prime}=0$, т. е. $x y=C$. Таким образом, эга система сводится к одному уравнению с разделяющимися переменымми $x^{\prime}+x^{2}+C=0$.
$x^{\prime}=(a y+b) x, y^{\prime}=(c x+d) y$.
Из этих уравнений следует

$$
\left(a+b y^{-1}\right) y^{\prime}=\left(c+d x^{-1}\right) x^{\prime}, \text { т. e. } y^{b} e^{a y}=C x^{d} e^{c x}
$$

О дальнейшем исследовании решений в свизи с некоторьмн биологическимі проблемами cm. V. Volterra, Rendicontí Sem. Mat. Milano 3 (1930), стр. 158 и сл.
$x^{\prime}-[a(p x+q y)+a] x, y^{\prime}=[b(p x+q y)+\beta] y$.
Отсюда следует $y^{a} x^{-b}=C e^{(a \beta-b a) t}$. Cм. V. Volterra, Rendiconti Sem. Mat. Milano 3 (1930), стр. $158^{\text {и сл. О дальнейшем псследовании }}$ этих уравнений в связи с некоторыми биологическими проблемами см. также A. J. Lotka, Journ. Washington Acad. 22 (1932), стр. 461-469; V. A. Kostitzin, Actualités scientif. 96 (1934).

Из этих уравнений следует $|y-b|^{n}=C|x-a|^{k}$. Таким образом, эта система пожет быть сведена к одному уравпению относнтельно x или y. Если в области $0 \leqslant x<a, 0 \leqslant y<b, x+y<c$ требуется найти решение, удовлетворяющее начальным условиям $x(0)=y(0)=0$, то получаем уравнение

$$
x^{\prime}-h(c-a-b)(a-x)+h(a-x)^{2}+h b a^{-k / h}(a-x)^{(k+h) / h}
$$

и соответствуюшее уравнение для y. См. Н. J. Curnow, Journ. London Math. Soc. 3 (1928), стр. 88-92. Подровное изучение этих уравнений в связи с некоторыми химическими проблемами си. J. G. van der Corput, H. J. Backer, Proceedings Amsterdam 41 (1938), crp. 10581073.
$9.5 \quad x^{\prime}=y^{2}-\cos x, y^{\prime}=-y \sin x$.
Отсюда следует $3 y \cos x=y^{3}+C$.
См. Е. Иконников, ЖТФ 4 (1937), стр. 433-437.
9.6. $x^{\prime}=-x y^{2}+x+y, y^{\prime}=x^{2} y-x-y$.

Решения удовлетворяют уравнению $x^{2}+y^{2}-2 \ln |x y-1|=C$.

Local Analysis and Resonance Normal Form

- The resonance normal form was introduced by H. Poincaré for the local investigation of systems of nonlinear ordinary differential equations. It is based on the maximal simplification of the right-hand sides of these equations by invertible transformations.
- The normal form approach was developed in works of G.D. Birkhoff, T.M. Cherry, A. Deprit, F.G. Gustavson, C.L. Siegel, J. Moser, A.D. Bruno and others. This technique is based on the Local Analysis method by Prof. Bruno [Bruno 1971, 1972, 1979, 1989].

The Simplest Form of a Polynomial System

$$
\left\{\begin{array}{l}
\dot{x}=a+\alpha x+\beta y+P(x, y) \\
\dot{y}=b+\gamma x+\delta y+Q(x, y)
\end{array}\right.
$$

By shifting and similarity transformation

$$
\left\{\begin{array}{lll}
\dot{\tilde{x}}=\lambda_{1} \tilde{x}+\sigma \tilde{y}+\tilde{P}(\tilde{x}, \tilde{y}), & \sigma \neq 0 \quad \text { only if } \quad \lambda_{1}=\lambda_{2} \\
\tilde{\tilde{y}}= & \lambda_{2} \tilde{y}+\tilde{Q}(\tilde{x}, \tilde{y}), & \text { for a real system } \lambda_{1}=\bar{\lambda}_{2} .
\end{array}\right.
$$

Ideally we wish to get a linear system

$$
\left\{\begin{array}{l}
\dot{\tilde{\tilde{x}}}=\lambda_{1} \tilde{\tilde{x}}+\sigma \tilde{\tilde{y}}, \\
\dot{\tilde{y}}=\quad \lambda_{2} \tilde{\tilde{y}} .
\end{array}\right.
$$

This cannot be done throughout the entire phase space, but it is possible locally - at a small domain near the stationary point.

Power Series Approaches

- Newton. Solving differential equations in power series with respect to the independent variable near the stationary point.
- Poincare. Transformation of dependent variables in the form of power series in the neighborhood of a stationary point.

Local Integrability

We consider an autonomous system of ordinary differential equations

$$
\begin{equation*}
\frac{d x_{i}}{d t} \stackrel{\text { def }}{=} \dot{x}_{i}=\phi_{i}(X), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

where $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ and $\phi_{i}(X)$ are polynomials.
In a neighborhood of the point $X=X^{0}$, the system (2) is locally integrable if it has there sufficient number m of independent first integrals of the form

$$
I_{k}(X)=\frac{a_{k}(X)}{b_{k}(X)}, \quad k=1, \ldots, m
$$

where functions $a_{k}(X)$ and $b_{k}(X)$ are analytic in a neighborhood of this point. Such functions $I_{k}(X)$ are called the formal integral.

Multi-index Notation

Let's suppose that we treat the reduced to a diagonal polynomial system near a stationary point at the origin and rewrite this n -dimension system in the terms

$$
\begin{equation*}
\dot{x}_{i}=\lambda_{i} x_{i}+x_{i} \sum_{\mathbf{q} \in \mathcal{N}_{i}} f_{i, \mathbf{q}} \mathbf{x}^{\mathbf{q}}, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

where we use the multi-index notation

$$
\mathbf{x}^{\mathbf{q}} \equiv \prod_{j=1}^{n} x_{j}^{q_{j}}
$$

with the power exponent vector $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ Here the sets:

$$
\mathcal{N}_{i}=\left\{\mathbf{q} \in \mathbb{Z}^{n}: q_{i} \geq-1 \text { and } q_{j} \geq 0, \text { if } j \neq i, \quad j=1, \ldots, n\right\}
$$

because the factor x_{i} has been moved out of the sum in (3).

Normal Form

The normalization is done with a near-identity transformation:

$$
\begin{equation*}
x_{i}=z_{i}+z_{i} \sum_{\mathbf{q} \in \mathcal{N}_{i}} h_{i, \mathbf{q}^{2}} \mathbf{z}^{\mathbf{q}}, \quad i=1, \ldots, n \tag{4}
\end{equation*}
$$

after which we have system (3) in the normal form:

$$
\begin{gather*}
\dot{z}_{i}=\lambda_{i} z_{i}+z_{i} \sum_{\langle\mathbf{q}, \mathbf{L}\rangle=0} g_{i, \mathbf{q}} \mathbf{z}^{\mathbf{q}}, \quad i=1, \ldots, n, \tag{5}\\
\mathbf{q} \in \mathcal{N}_{i}
\end{gather*}
$$

where $\mathbf{L}=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is the vector of eigenvalues.

Theorem (Bruno 1971)

There exists a formal change (4) reducing (3) to its normal form (5).
Note, the normalization (4) does not change the linear part of the system.

Resonance Terms

- The important difference between (3) and (5) is a restriction on the range of the summation, which is defined by the equation:

$$
\begin{equation*}
\langle\mathbf{q}, \mathbf{L}\rangle=\sum_{j=1}^{n} q_{j} \lambda_{j}=0 \tag{6}
\end{equation*}
$$

l.e. the summation in the normal form (5) contains only terms, for which (6) is valid. They are called resonance terms.

In the two-dimensional case there are a finite number of them, if the ratio of the eigenvalues is not non-positive rational.

- We rewrite below the normalized equation (5) as

$$
\begin{equation*}
\dot{z}_{i}=\lambda_{i} z_{i}+z_{i} g_{i}(Z) \tag{7}
\end{equation*}
$$

where $g_{i}(Z)$ is the re-designate sum.

Calculation of the Normal Form

The h and g coefficients in (4) and (5) are found by using the recurrent formula:

$$
\begin{equation*}
g_{i, \mathbf{q}}+\langle\mathbf{q}, \mathbf{L}\rangle \cdot h_{i, \mathbf{q}}=-\sum_{j=1}^{n} \sum_{\substack{\mathbf{p}+\mathbf{r}=\mathbf{q} \\ \mathbf{p}, \mathbf{r} \in \bigcup_{i} \mathcal{N}_{i} \\ \mathbf{q} \in \mathcal{N}_{i}}}\left(p_{j}+\delta_{i j}\right) \cdot h_{i, \mathbf{p}} \cdot g_{j, \mathbf{r}}+\tilde{\Phi}_{i, \mathbf{q}}, \tag{8}
\end{equation*}
$$

For this calculation we have two programs.

- in LISP [Edneral, Khrustalev 1992]
- in the high-level language of the MATHEMATICA system
[Edneral, Khanin 2002].

Conditions \mathbf{A} and ω

There are two conditions

- Condition A. In the normal form (5)

$$
\begin{equation*}
g_{j}(Z)=\lambda_{j} a(Z)+\bar{\lambda}_{j} b(Z), \quad j=1, \ldots, n \tag{9}
\end{equation*}
$$

where $a(Z)$ and $b(Z)$ are some formal power series.

- Condition ω (on small divisors) [Bruno 1971]. It is fulfilled for almost all vectors L. At least it is satisfied at rational eigenvalues.

Theorem (Bruno 1971)

If vector L satisfies Condition ω and the normal form (5) satisfies Condition A then the normalizing transformation (4) converges.

Local Integral

Consider the case of a $[N: M]$ resonance in the two-dimension system. The eigenvalues here satisfy the ratio $N \cdot \lambda_{1}=-M \cdot \lambda_{2}$ and from the condition \mathbf{A} (9) we have

$$
g_{1}(Z)=\lambda_{1} a(Z)+\bar{\lambda}_{1} b(Z), \quad g_{2}(Z)=\lambda_{2} a(Z)+\bar{\lambda}_{2} b(Z)
$$

i.e. $N \cdot g_{1}(Z)=-M \cdot g_{2}(Z)$.

The normalized system (7) can be conditionally rewritten as

$$
\begin{gathered}
N \times\left|\frac{d \log \left(z_{1}\right)}{d t}=\lambda_{1}+g_{1}(Z), \quad-M \times\right| \frac{d \log \left(z_{2}\right)}{d t}=\lambda_{2}+g_{2}(Z) \\
\text { So, } \frac{d \log \left(z_{1}^{N} \cdot z_{2}^{M}\right)}{d t}=0 \text { or } z_{1}^{N} \cdot z_{2}^{M}=\text { const. }
\end{gathered}
$$

It is the first integral. So, the system is integrable.

Near a stationary point the condition \mathbf{A} :

- Ensures convergence;
- Provides the local integrability;

Local Integrability Condition near the Stationary Point

- The condition of local integrability \mathbf{A} is an infinite system of polynomial equations in the system parameters.
- But over the number field any infinite polynomial system is equivalent to a finite system with respect of Hilbert's theorem [Hilbert 1890]. So, we can write down the condition A as a finite algebraic system on the parameters of the ODE system. The problem is to find this finite set of equations.
- We experimentally established that for the system of ODEs studied below, adding more than 3 lower equations does not change its solution. The solution of the system of the first three equations does not change when the fourth, fifth, etc. are added to them. We suppose that these 3 equations form this basis.

Scheme of the Algorithm

Any system is locally integrable in neighborhoods of regular points of the phase space and locally integrable in all cases of stationary points, except of resonant ones. Therefore, our approach requires the study of the local integrability at all stationary points of the region under study only.

- We select one stationary point;
- We impose restrictions on the parameters of the system, making the chosen stationary point "resonant".
- At this resonant stationary point we calculate the normal form till some fixed order, create and solve the truncated condition \mathbf{A} as a system of algebraic equations in the parametric space.
- If we have several resonant stationary points then we should merge corresponding systems. As alternative we can solve this system for one point and check solutions at other points.
- For found parameter sets we try to calculate the first integrals.

Problem

We will demonstrate the search for integrable cases using an example of the [Bautin 1952, Lunkevich Sibirskii 1982] system which has a quadratic polynomial right hand sides

$$
\begin{align*}
& \frac{d \tilde{x}(t)}{d t}=\alpha \tilde{x}(t)+\beta \tilde{y}(t)+\tilde{\tilde{a}}_{1} \tilde{x}^{2}(t)+\tilde{\tilde{a}}_{2} \tilde{x}(t) \tilde{y}(t)+\tilde{\tilde{a}}_{3} \tilde{y}^{2}(t), \\
& \frac{d \tilde{y}(t)}{d t}=\gamma \tilde{x}(t)+\delta \tilde{y}(t)+\tilde{b}_{1} \tilde{x}(t)+\tilde{b}_{2} \tilde{x}(t) \tilde{y}(t)+\tilde{b}_{3} \tilde{y}^{2}(t), \tag{10}
\end{align*}
$$

where $\tilde{x}(t)$ and $\tilde{y}(t)$ are functions in time and other letters are arbitrary real parameters.

By linear transformations, the linear part of this system can be reduced to the Jordan form. The origin is the stationary point now

$$
\begin{aligned}
& \dot{x}=\lambda_{1} x+\sigma y+\tilde{a}_{1} x^{2}+\tilde{a}_{2} x y+\tilde{a}_{3} y^{2}, \\
& \dot{y}=\quad \lambda_{2} y+\tilde{b}_{1} x^{2}+\tilde{b}_{2} x y+\tilde{b}_{3} y^{2} .
\end{aligned}
$$

We omit here the time dependence and use a dot instead of the time derivative. λ_{1}, λ_{2} are eigenvalues. If $\lambda_{1} \neq \lambda_{2}$ then $\sigma=0$.

Two Cases

If both eigenvalues are non-zero at the same time, we can choose $\left|\lambda_{2}\right|=-1$ using time scaling. Also we put $\sigma=0$. Then we have two cases of system (10). The center case

$$
\begin{aligned}
& \dot{x}=i y+a_{1} x^{2}+a_{2} x y+a_{3} y^{2} \\
& \dot{y}=-i x+b_{1} x^{2}+b_{2} x y+b_{3} y^{2}
\end{aligned}
$$

and the saddle case

$$
\begin{aligned}
& \dot{x}=\lambda x+a_{1} x^{2}+a_{2} x y+a_{3} y^{2} \\
& \dot{y}=-y+b_{1} x^{2}+b_{2} x y+b_{3} y^{2}
\end{aligned}
$$

Condition of Local Integrability as a System of Algebraic Equations

For the saddle case and the resonance 1:1 the truncated \mathbf{A} system at the origin stationary point is

$$
\begin{aligned}
& a_{1} a_{2}-b_{2} b_{3}=0, \\
& -a_{3} b_{2}\left(-6 a_{1}^{2}+9 a_{1} b_{2}+14 b_{1} b_{3}+6 b_{2}^{2}\right)+9 a_{2}^{2}\left(a_{1} b_{2}+b_{1} b_{3}\right)+a_{2}\left(14 a_{1} a_{3} b_{1}-\right. \\
& \left.3 b_{3}\left(2 b_{1} b_{3}+3 b_{2}^{2}\right)\right)+6 a_{2}^{3} b_{1}=0, \\
& 432 a_{1}^{4} a_{2} a_{3}+36 a_{1}^{3}\left(54 a_{2}^{3}+18 a_{2}^{2} b_{3}-61 a_{2} a_{3} b_{2}-18 a_{3} b_{2} b_{3}\right)- \\
& 6 a_{1}^{2}\left(162 a_{2}^{3} b_{2}+a_{2}^{2}\left(131 a_{3} b_{1}-162 b_{2} b_{3}\right)+3 a_{2} a_{3}\left(106 b_{1} b_{3}+75 b_{2}^{2}\right)+\right. \\
& \left.2 a_{3} b_{2}\left(194 a_{3} b_{1}-381 b_{2} b_{3}\right)\right)+a_{1}\left(3708 a_{2}^{4} b_{1}-108 a_{2}^{3}\left(33 b_{2}^{2}-38 b_{1} b_{3}\right)-\right. \\
& 3 a_{2}^{2} b_{1}\left(5299 a_{3} b_{2}+1524 b_{3}^{2}\right)-4 a_{2}\left(868 a_{3}^{2} b_{1}^{2}-981 a_{3} b_{2}^{3}+81 b_{3}^{2}\left(3 b_{2}^{2}-2 b_{1} b_{3}\right)\right)+ \\
& \left.36 b_{2}\left(142 a_{3}^{2} b_{1} b_{2}+a_{3} b_{3}\left(53 b_{1} b_{3}-114 b_{2}^{2}\right)-18 b_{2} b_{3}^{3}\right)\right)-1782 a_{2}^{4} b_{1} b_{2} \\
& -6 a_{2}^{3} b_{1}\left(523 a_{3} b_{1}+654 b_{2} b_{3}\right)+18 a_{2}^{2} b_{3}\left(-284 a_{3} b_{1}^{2}+75 b_{1} b_{2} b_{3}+198 b_{2}^{3}\right)+ \\
& 3 a_{2}\left(a_{3}\left(776 b_{1}^{2} b_{3}^{2}+5299 b_{1} b_{2}^{2} b_{3}+594 b_{2}^{4}\right)+12 b_{2} b_{3}^{2}\left(61 b_{1} b_{3}+27 b_{2}^{2}\right)\right)+ \\
& 2 b_{2}\left(a_{3}^{2} b_{1}\left(1736 b_{1} b_{3}+1569 b_{2}^{2}\right)+3 a_{3} b_{2} b_{3}\left(131 b_{1} b_{3}-618 b_{2}^{2}\right)-\right. \\
& \left.108 b_{3}^{3}\left(2 b_{1} b_{3}+9 b_{2}^{2}\right)\right)=0 .
\end{aligned}
$$

It has been experimentally established that adding further equations does not change solutions of this system.
Equations of a similar form were obtained also for resonances 2 : 1 and 3 : 1 and for pure imaginary eigenvalues also.

Solutions of the Condition A

The MATHEMATICA-11 system solver Solve received 13 families of rational solutions of the algebraic system above. Some of them are a consequence of others, we marked them by asterisks:

1) $\left\{a_{1}=\frac{b_{2} b_{3}}{a_{2}}, b_{1}=\frac{a_{3} b_{2}^{3}}{a_{2}^{3}}\right\}$;
2) $\left\{a_{2}=0, b_{2}=0\right\}$;
3) $\left\{a_{1}=-\frac{b_{2}}{2}, b_{3}=-\frac{a_{2}}{2}\right\}$;
4) ${ }^{*}\left\{a_{1}=-\frac{b_{2}}{2}, a_{2}=0, b_{3}=0\right\}$;
5) $\left\{a_{2}=0, a_{3}=0, b_{3}=0\right\}$;
6) ${ }^{*}\left\{a_{1}=0, b_{2}=0, b_{3}=-\frac{a_{2}}{2}\right\}$;
7) $\left\{a_{1}=2 b_{2}, b_{1}=\frac{a_{2} b_{2}}{a_{3}}, b_{3}=2 a_{2}\right\}$;
8) $*\left\{a_{1}=2 b_{2}, b_{1}=\frac{a_{3} b_{2}^{3}}{a_{2}^{3}}, b_{3}=2 a_{2}\right\}$;
9) ${ }^{*}\left\{a_{1}=2 b_{2}, a_{2}=0, a_{3}=0, b_{3}=0\right\}$;
10) ${ }^{*}\left\{a_{1}=2 b_{2}, a_{2}=0, b_{1}=0, b_{3}=0\right\}$;
11) ${ }^{*}\left\{a_{1}=0, a_{3}=0, b_{2}=0, b_{3}=2 a_{2}\right\}$;
12) $\left\{a_{1}=-\frac{b_{2}}{2}, a_{3}=0, b_{1}=0, b_{3}=-\frac{a_{2}}{2}\right\}$;
13) $\left\{a_{1}=2 b_{2}, a_{3}=0, b_{1}=0, b_{3}=2 a_{2}\right\}$.

With these sets of parameters, we checked, if possible, the integrability condition at other stationary points of the system.

Calculation of the First Integrals

An autonomous second order system can be rewritten as a non-autonomous first order equation. Let

$$
\frac{d x(t)}{d t}=P(x(t), y(t)), \quad \frac{d y(t)}{d t}=Q(x(t), y(t)) .
$$

We divided the left and right hand sides of the system equations into each other. In result we have the first-order non-autonomous differential equation for $x(y)$ or $y(x)$

$$
\frac{d x(y)}{d y}=\frac{P(x(y), y)}{Q(x(y), y)} \quad \text { or } \quad \frac{d y(x)}{d x}=\frac{Q(x, y(x))}{P(x, y(x))} \text {. }
$$

Then we try to solve them by the MATHEMATICA-11 solver DSolve and got the solution $y(x)$ (or $x(y)$). After that we calculated the integral from this solution by extracting the integration constant.

If this procedure failed, we manually used the Darboux method.

First Integrals

We calculated the integrals for the resonance 1:1 case:

1) $\dot{x}=x+b_{2} b_{3} x^{2} / a_{2}+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+a_{3} b_{2}^{3} x^{2} / a_{2}^{3}+b_{2} x y+b_{3} y^{2}$,

$$
\begin{aligned}
I_{1}(x, y)= & \left(\left(a_{3} b_{2}-a_{2} b_{3}\right)\left(b_{2} x-a_{2} y\right)-a_{2}^{2}\right) \times \\
& \left(b_{2}^{2}\left(1-\frac{\left(a_{2} b_{3}-a_{3} b_{2}\right)\left(a_{2} y-b_{2} x\right)}{a_{2}^{2}}\right)\right)^{\frac{a_{2}\left(a_{2}+2 b_{3}\right)}{a_{3} b_{2}-a_{2} b_{3}}} \times \\
& \left(2 a_{2}^{4} a_{3}+\left(a_{2}\left(a_{2}+b_{3}\right)+a_{3} b_{2}\right)\left(a_{3} b_{2}^{2} x^{2}\left(a_{2}^{2}+2 a_{3} b_{2}\right)+\right.\right. \\
& a_{2} x\left(y\left(a_{2}^{2}+2 a_{3} b_{2}\right)\left(a_{2}^{2}-a_{2} b_{3}+a_{3} b_{2}\right)+2 a_{2} a_{3} b_{2}\right)+ \\
& \left.\left.a_{2}^{2} a_{3} y\left(y\left(a_{2}^{2}+2 a_{3} b_{2}\right)-2 a_{2}\right)\right)\right)
\end{aligned}
$$

2) $\dot{x}=x+a_{1} x^{2}+a_{3} y^{2}, \quad \dot{y}=-y+b_{1} x^{2}+b_{3} y^{2}$;

$$
\begin{aligned}
I_{1}(x, y)= & b_{1}\left(a_{3} b_{1}-a_{1} b_{3}\right) \int\left(-y+b_{1} x^{2}+b_{3} y^{2}\right) \times \\
& \left(x\left(-x\left(a_{1}^{2}+b_{1} x\left(a_{1} b_{3}-a_{3} b_{1}\right)+b_{1} b_{3}\right)-2 a_{1}\right)-\right. \\
& y^{2}\left(b_{3} x\left(a_{1} b_{3}-a_{3} b_{1}\right)+a_{1} a_{3}+b_{3}^{2}\right)+y\left(2 b_{3}-x\left(a_{1} x+3\right)\left(a_{3} b_{1}-a_{1} b_{3}\right)\right)+ \\
& \left.a_{3} y^{3}\left(a_{1} b_{3}-a_{3} b_{1}\right)-1\right)^{-1} d x
\end{aligned}
$$

3) $\dot{x}=x-\frac{1}{2} b_{2} x^{2}+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+b_{1} x^{2}+b_{2} x y-\frac{1}{2} a_{2} y^{2}$,

$$
I_{3}(x, y)=-3 a_{2} x y^{2}-2 a_{3} y^{3}+2 b_{1} x^{3}+3 b_{2} x^{2} y-6 x y ;
$$

4) $\dot{x}=x-\frac{1}{2} b_{2} x^{2}+a_{3} y^{2}, \quad \dot{y}=-y+b_{1} x^{2}+b_{2} x y$,

$$
I_{4}=-\frac{2}{3} a_{3} y^{3}+\frac{2}{3} b_{1} x^{3}+x y\left(b_{2} x-2\right) ;
$$

5) $\dot{x}=x+a_{1} x^{2}, \quad \dot{y}=-y+b_{1} x^{2}+b_{2} x y$,

$$
\begin{aligned}
I_{5}(x, y)= & \frac{\left(a_{1} x+1\right)^{-\frac{b_{2}}{a_{1}}-1}}{b_{2}\left(a_{1}-b_{2}\right)\left(a_{1}+b_{2}\right)}\left(a_{1}^{2} b_{2} x y-a_{1} b_{1} b_{2} x^{2}-2 a_{1} b_{1} x-b_{1} b_{2}^{2} x^{2}-\right. \\
& \left.2 b_{1} b_{2} x-2 b_{1}+b_{2}^{3}(-x) y\right)
\end{aligned}
$$

6) $\dot{x}=x+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+b_{1} x^{2}-\frac{1}{2} a_{2} y^{2}$,

$$
I_{6}=x y\left(a_{2} y+2\right)+\frac{2}{3} a_{3} y^{3}-\frac{2}{3} b_{1} x^{3}
$$

7) $\dot{x}=x+2 b_{2} x^{2}+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+\frac{a_{2} b_{2}}{a_{3}} x^{2}+b_{2} x y+2 a_{2} y^{2}$,

$$
I_{7}(x, y)=\frac{a_{2} b_{2} x^{2}}{a_{3}}+2 a_{2} y^{2}+b_{2} x y-y
$$

8) $\dot{x}=x+2 b_{2} x^{2}+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+\frac{a_{3} b_{2}^{3}}{a_{2}^{3}} x^{2}+b_{2} x y+2 a_{2} y^{2}$,

$$
\begin{aligned}
\iota_{8}= & \left(\left(a_{3} b_{2}-2 a_{2}^{2}\right)\left(b_{2} x-a_{2} y\right)-a_{2}^{2}\right)\left(b_{2}^{2}\left(1-\frac{\left(2 a_{2}^{2}-a_{3} b_{2}\right)\left(a_{2} y-b_{2} x\right)}{a_{2}^{2}}\right)\right)^{\frac{5 a_{2}^{2}}{a_{3} b_{2}-2 a_{2}^{2}} \times} \\
& \left(2 a_{2}^{4} a_{3}+\left(3 a_{2}^{2}+a_{3} b_{2}\right)\left(a_{3} b_{2}^{2} x^{2}\left(a_{2}^{2}+2 a_{3} b_{2}\right)+\right.\right. \\
& \left.\left.a_{2} x\left(y\left(a_{3} b_{2}-a_{2}^{2}\right)\left(a_{2}^{2}+2 a_{3} b_{2}\right)+2 a_{2} a_{3} b_{2}\right)+a_{2}^{2} a_{3} y\left(y\left(a_{2}^{2}+2 a_{3} b_{2}\right)-2 a_{2}\right)\right)\right)
\end{aligned}
$$

9) $\dot{x}=x+2 b_{2} x^{2}, \quad \dot{y}=-y+b_{1} x^{2}+b_{2} x y$,
$I_{9}=\left(3 b_{2}^{3} x y-b_{1}\left(3 b_{2} x\left(b_{2} x+2\right)+2\right)\right) /\left(3 b_{2}^{3}\left(2 b_{2} x+1\right)^{3 / 2}\right) ;$
10) $\dot{x}=x+2 b_{2} x^{2}+a_{3} y^{2}, \quad \dot{y}=-y+b_{2} x y$,
$I_{10}(x, y)=\frac{a_{3} b_{2}^{2}\left(\frac{1}{3} \log \left(a_{3} y^{2}+3 x\right)-\frac{1}{2} \log \left(a_{3} b_{2} y^{2}+2 b_{2} x+1\right)\right)}{b_{2}+1}+\frac{a_{3} b_{2}^{2} \log \left(3 b_{2} y+3 y\right)}{3\left(b_{2}+1\right)} ;$
11) $\dot{x}=x+a_{2} x y, \quad \dot{y}=-y+b_{1} x^{2}+2 a_{2} y^{2}$,
$I_{11}(x, y)=\frac{a_{2}^{2} b_{1} \log (x)}{3\left(a_{2}-1\right)}-\frac{a_{2}^{2} b_{1}\left(\frac{1}{2} \log \left(a_{2} b_{1} x^{2}-2 a_{2} y+1\right)-\frac{1}{3} \log \left(3 y-b_{1} x^{2}\right)\right)}{a_{2}-1} ;$
12) $\dot{x}=x-b_{2} / 2 x^{2}+a_{2} x y, \quad \dot{y}=-y+b_{2} x y-a_{2} / 2 y^{2}$,
$I_{12}(x, y)=\frac{a_{2} x y^{2}-b_{2} x^{2} y+2 x y}{a_{2}} ;$
13) $\dot{x}=x+2 b_{2} x^{2}+a_{2} x y, \quad \dot{y}=-y+b_{2} x y+2 a_{2} y^{2}$,
$I_{13}(x, y)=\left(216 a_{2}^{3} y^{3}-648 a_{2}^{2} b_{2} x y^{2}-324 a_{2}^{2} y^{2}+648 a_{2} b_{2}^{2} x^{2} y+648 a_{2} b_{2} x y+\right.$ $\left.162 a_{2} y-216 b_{2}^{3} x^{3}-324 b_{2}^{2} x^{2}-162 b_{2} x-27\right) /\left(x^{2} y^{2}\right)$.

Nonintegrable Case?

We have carried out similar calculations for the case of pure imaginary eigenvalues and got 20 appropriate sets of parameters (11 independent). We found integrability for all sets.

Also we did that for the resonance $2: 1$ and got 12 sets of parameters (8 independent). 7 of them correspond to integrable cases. But for one

$$
\dot{x}=2 x-\frac{1}{2} b_{3} x y, \quad \dot{y}=-y+b_{1} x^{2}+b_{3} y^{2}
$$

we could not find the first integral. This case needs further research.

General Case

But the algebraic systems for each resonance have a similar form and are written with respect to the same variables. That's why the next step was to combine algebraic equations for local integrability conditions for all three calculated resonances.

The solutions of the resulting system of this 9 equations can predict the integrable cases of the general system

$$
\begin{align*}
& \dot{x}=\alpha x+a_{1} x^{2}+a_{2} x y+a_{3} y^{2} \\
& \dot{y}=-y+b_{1} x^{2}+b_{2} x y+b_{3} y^{2} \tag{11}
\end{align*}
$$

where α is an arbitrary parameter.

Solutions of the Combined System

The system has 14 rational solutions of the system above. Some of them are a consequence of others. 11 solutions are independent:

1) $\left\{a_{2}=0, a_{3}=0, b_{2}=0\right\} ;$
2) $\left\{a_{2}=0, a_{3}=0, b_{3}=0\right\}$;
3) $\left\{a_{1}=0, b_{1}=0, b_{2}=0\right\}$;
4) ${ }^{*}\left\{a_{1}=0, a_{2}=0, b_{1}=0, b_{2}=0\right\}$;
5) $\left\{a_{1}=2 b_{2}, a_{2}=0, b_{1}=0, b_{3}=0\right\}$;
6) $\left\{a_{1}=0, a_{3}=0, b_{1}=0, b_{3}=0\right\}$;
7) $\left\{a_{1}=0, b_{1}=0, b_{2}=0, b_{3}=0\right\}$;
8) $\left\{a_{1}=0, b_{1}=0, b_{2}=0, b_{3}=-\frac{a_{2}}{2}\right\}$;
9) $\left\{a_{1}=b_{2}, a_{3}=0, b_{1}=0, b_{3}=a_{2}\right\}$;
10) $\left\{a_{1}=0, b_{1}=0, b_{2}=0, b_{3}=a_{2}\right\}$;
11) $\left\{a_{1}=0, a_{3}=0, b_{2}=0, b_{3}=2 a_{2}\right\}$;
12) $\left\{a_{1}=0, b_{1}=0, b_{2}=0, b_{3}=2 a_{2}\right\}$;
13) ${ }^{*}\left\{a_{1}=0, a_{2}=0, b_{1}=0, b_{2}=0, b_{3}=0\right\}$;
14) ${ }^{*}\left\{a_{1}=0, a_{3}=0, b_{1}=0, b_{2}=0, b_{3}=-\frac{a_{2}}{2}\right\}$.

For all sets of parameters above we found the first integrals.

Integrals of the General System

1) $\dot{x}=\alpha x+a_{1} x^{2}, \quad \dot{y}=-y+b_{1} x^{2}+b_{3} y^{2}$,

This is the integrable case, but the expression for the first integral is too huge for a demonstration here.
2) $\dot{x}=\alpha x+a_{1} x^{2}, \quad \dot{y}=-y+b_{1} x^{2}+b_{2} x y$,

$$
\begin{aligned}
I_{2}(x, y)= & \frac{x^{1 / \alpha}\left(\alpha+a_{1} x\right)^{-\frac{1}{\alpha}-\frac{b_{2}}{a_{1}}}}{(\alpha+1) a_{1}} \times \\
& \left(\alpha b_{1} x\left(\frac{a_{1} x}{\alpha}+1\right)^{\frac{1}{\alpha}+\frac{b_{2}}{a_{1}}}{ }_{2} F_{1}\left(1+\frac{1}{\alpha}, \frac{b_{2}}{a_{1}}+\frac{1}{\alpha} ; 2+\frac{1}{\alpha} ;-\frac{a_{1} x}{\alpha}\right)-\right. \\
& \alpha b_{1} x\left(\frac{a_{1} x}{\alpha}+1\right)^{\frac{1}{\alpha}+\frac{b_{2}}{a_{1}}}{ }_{2} F_{1}\left(1+\frac{1}{\alpha}, \frac{b_{2}}{a_{1}}+\frac{1}{\alpha}+1 ; 2+\frac{1}{\alpha} ;-\frac{a_{1} x}{\alpha}\right)- \\
& \left.\alpha a_{1} y-a_{1} y\right) ;
\end{aligned}
$$

3) $\dot{x}=\alpha x+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+b_{3} y^{2}$,

$$
I_{3}(x, y)=\frac{y^{\alpha}\left(1-b_{3} y\right)^{-\alpha-\frac{a_{2}}{b_{3}}}}{\alpha+2} \times
$$

4) $\dot{x}=\alpha x+a_{3} y^{2}, \quad \dot{y}=-y+b_{3} y^{2}$,

$$
\begin{aligned}
I_{4}(x, y)= & \frac{e^{-\alpha\left(\log \left(1-b_{3} y\right)-\log (y)\right)}\left({ }^{(\alpha+1) b_{3}}\right.}{} \times \\
& \left(a_{3} y^{\alpha+1}{ }_{2} F_{1}\left(\alpha, \alpha+1 ; \alpha+2 ; b_{3} y\right) e^{\alpha\left(\log \left(1-b_{3} y\right)-\log (y)\right)}-\right. \\
& a_{3} y^{\alpha+1}{ }_{2} F_{1}\left(\alpha+1, \alpha+1 ; \alpha+2 ; b_{3} y\right) e^{\alpha\left(\log \left(1-b_{3} y\right)-\log (y)\right)}- \\
& \left.\alpha b_{3} x-b_{3} x\right)
\end{aligned}
$$

5) $\dot{x}=\alpha x+2 b_{2} x^{2}+a_{3} y^{2}, \quad \dot{y}=-y+b_{2} x y$,

$$
\begin{aligned}
I_{5}(x, y)= & \frac{a_{3} b_{2}^{2}}{\alpha(\alpha+2)\left(b_{2}+1\right)} \times \\
& \left(-\alpha \log \left(\alpha+a_{3} b_{2} y^{2}+2 b_{2} x\right)-2 \log \left(\alpha+a_{3} b_{2} y^{2}+2 b_{2} x\right)+\right. \\
& \left.2 \log \left(a_{3} y^{2}+(\alpha+2) x\right)+2 \alpha \log (y)\right)
\end{aligned}
$$

6) $\dot{x}=\alpha x+a_{2} x y, \quad \dot{y}=-y+b_{2} x y$, $I_{6}(x, y)=-b_{2} x+a_{2} y+\log (x)+\alpha \log (y) ;$
7) $\dot{x}=\alpha x+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y$,

$$
I_{7}(x, y)=y^{\alpha}\left(-a_{2} y\right)^{-\alpha}\left(a_{2}^{2} x e^{a_{2} y}\left(-a_{2} y\right)^{\alpha}-a_{3} \Gamma\left(\alpha+2,-a_{2} y\right)\right) / a_{2}^{2}
$$

8) $\dot{x}=\alpha x+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y-\frac{1}{2} a_{2} y^{2}$,

$$
\begin{aligned}
I_{8}(x, y)= & \frac{y^{\alpha}}{(\alpha+2)(\alpha+3)\left(a_{2} y+2\right)^{\alpha}} \times \\
& \left(2 a _ { 3 } y ^ { 2 } (\frac { 1 } { 2 } a _ { 2 } y + 1) ^ { \alpha } \left(2(\alpha+3){ }_{2} F_{1}\left(\alpha, \alpha+2 ; \alpha+3 ;-\frac{1}{2} a_{2} y\right)+\right.\right. \\
& \left.(\alpha+2) a_{2} y_{2} F_{1}\left(\alpha, \alpha+3 ; \alpha+4 ;-\frac{1}{2} a_{2} y\right)\right)+ \\
& \left.(\alpha+2)(\alpha+3) x\left(a_{2} y+2\right)^{2}\right) ;
\end{aligned}
$$

9) $\dot{x}=\alpha x+b_{2} x^{2}+a_{2} x y, \quad \dot{y}=-y+b_{2} x y+a_{2} y^{2}$, $l_{9}(x, y)=\frac{x y^{\alpha}}{b_{2}}\left(\alpha-\alpha a_{2} y+b_{2} x\right)^{-\alpha-1} ;$
10) $\dot{x}=\alpha x+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+a_{2} y^{2}$,

$$
\begin{aligned}
I_{10}(x, y)= & \frac{y^{\alpha}}{(\alpha+1) a_{2}\left(a_{2} y-1\right)\left(1-a_{2} y\right)^{\alpha}} \times \\
& \left(a_{2} a_{3} y^{2}\left(1-a_{2} y\right)^{\alpha}{ }_{2} F_{1}\left(\alpha+1, \alpha+1 ; \alpha+2 ; a_{2} y\right)-\right. \\
& a_{3} y\left(1-a_{2} y\right)^{\alpha}{ }_{2} F_{1}\left(\alpha+1, \alpha+1 ; \alpha+2 ; a_{2} y\right)+ \\
& \left.\alpha a_{2} x+a_{2} x+a_{3} y\right) ;
\end{aligned}
$$

11) $\dot{x}=\alpha x+a_{2} x y, \quad \dot{y}=-y+b_{1} x^{2}+2 a_{2} y^{2}$, $I_{11}(x, y)=\frac{a_{2}^{2} b_{1} x^{2}\left(-b_{1} x^{2}+2 \alpha y+y\right)^{2 \alpha}}{\alpha(2 \alpha+1)\left(a_{2}-\alpha\right)\left(\alpha\left(2 a_{2} y-1\right)-a_{2} b_{1} x^{2}\right)^{2 \alpha+1}} ;$
12) $\dot{x}=\alpha x+a_{2} x y+a_{3} y^{2}, \quad \dot{y}=-y+2 a_{2} y^{2}$,

$$
\begin{aligned}
& \Lambda_{12}(x, y)= \frac{y^{\alpha}\left(1-2 a_{2} y\right)^{-\alpha-\frac{1}{2}}}{\alpha+2} \times \\
&\left(a_{3} y^{2}\left(1-2 a_{2} y\right)^{\alpha+\frac{1}{2}}{ }_{2} F_{1}\left(\alpha+\frac{3}{2}, \alpha+2 ; \alpha+3 ; 2 a_{2} y\right)+\alpha x+2 x\right)
\end{aligned}
$$

13) $\dot{x}=\alpha x+a_{3} y^{2}, \quad \dot{y}=-y$,
$I_{13}(x, y)=y^{\alpha}\left(2 x+\alpha x+a_{3} y^{2}\right) /(2+\alpha) ;$
14) $\dot{x}=\alpha x+a_{2} x y, \quad \dot{y}=-y-\frac{1}{2} a_{2} y^{2}$, $I_{14}(x, y)=x y^{\alpha}\left(a_{2} y+2\right)^{2-\alpha}$.

Examples 9.1-9.4 and 9.6 of chapter IX of the book [Kamke] are examples of integrable cases of systems of two autonomous ODEs with quadratic polynomial right-hand sides. Systems 9.1 and 9.6 have the linear parts with all zero eigenvalues and are outside the scope of this discussion. Other examples are:

- System $9.2 \quad \dot{x}=x(a y+b), \quad \dot{y}=y(c x+d)$, after changing the time $t \rightarrow-\tau / d$ goes to case 6 above, if we substitute
$\alpha \rightarrow-b / d, a_{2} \rightarrow-a / d, b_{2} \rightarrow-c / d ;$
- System $9.3 \quad \dot{x}=x[a(p x+q y)+\alpha], \quad \dot{y}=y[b(p x+q)+\beta]$. Case 9 above is its special case at $a=b$ by changing the time and parameters α, a_{2} and b_{2};
- System $9.4 \dot{x}=h(a-x)(c-x-y), \quad \dot{y}=k(b-y)(c-x-y)$, by the shift $x \rightarrow x+a, y \rightarrow y+b$ is reduced to the form with a stationary point at the origin
$\dot{x}=h x(a+b-c+x+y), \quad \dot{y}=k y(a+b-c+x+y)$, and also can be transformed to case 9 at the special case $h=k$.
So, our results are consistent with this book.

3D Chemical Kinetics Models

- The Jabotinsky-Korzukhin model [Korzukhin, Jabotinsky 1965].

$$
\begin{aligned}
& \dot{x}=k_{1} x(C-y)-k_{0} x z, \\
& \dot{y}=k_{1} x(C-y)-k_{2} y, \\
& \dot{z}=k_{2} y-k_{3} z .
\end{aligned}
$$

Eigenvalues of the linear part here are $\left\{C \cdot k_{1},-k_{2},-k_{3}\right\}$.

- Oregonator

$$
\begin{aligned}
& \dot{x}=A k_{3} x-2 k_{4} x^{2}+A k_{1} y-k_{1} x y, \\
& \dot{y}=-A k_{1} y-k_{2} x y+f k_{5} z \\
& \dot{z}=A k_{3} x-k_{5} z
\end{aligned}
$$

Integrable Cases of a Three-dimensional Problem

First we considered resonant cases of the system

$$
\begin{align*}
& \dot{x}=M_{x} x+a_{2} x y+a_{4} x z+a_{5} y z, \\
& \dot{y}=-M_{y} y+b_{2} x y+b_{4} x z+b_{5} y z, \tag{12}\\
& \dot{z}=\quad-z+c_{2} x y+c_{4} x z+c_{5} y z
\end{align*}
$$

with natural M_{x}, M_{y} on the square table $\{1,2,3\} \times\{1,2,3\}$

N	M_{x}	M_{y}	Algebraic solutions	ODEs Solutions	\% Success
8	1	1	23	19	83
8	1	2	16	12	75
8	1	3	25	19	76
8	2	1	57	49	86
8	2	2	34	29	85
8	2	3	43	35	81
9	3	1	60	51	85
9	3	2	63	58	92
10	3	3	43	38	88

Then we solved the combined algebraic system of 329 equations, found its 10 solutions, and opened that MATHEMATICA-11 system solved all corresponding systems of ODEs of the form (12) except one (a red color). These systems with arbitary M_{x} and M_{y} are:

$$
\begin{array}{lll}
\dot{x}=M_{x} x+a_{2} x y+a_{4} x z+a_{5} y z, & \dot{y}=-M_{y} y+b_{5} y z, & \dot{z}=-z+c_{5} y z ; \\
\dot{x}=M_{x} x, & \dot{y}=-M_{y} y+b_{2} x y+b_{4} x z, & \dot{z}=-z+c_{4} \times z ; \\
\dot{x}=M_{x} x+a_{2} x y+a_{4} x z+a_{5} y z, & \dot{y}=-M_{y} y+a_{4} y z, & \dot{z}=-z-a_{2} y z ; \\
\dot{x}=M_{x} x, & \dot{y}=-M_{y} y+b_{2} x y, & \dot{z}=-z+c_{4} \times z ; \\
\dot{x}=M_{x} x, & \dot{y}=-M_{y} y+b_{4} \times z, & \dot{z}=-z+c_{4} \times z ; \\
\dot{x}=M_{x} x, & \dot{y}=-M_{y} y, & \dot{z}=-z+c_{4} \times z+c_{5} y z ; \\
\dot{x}=M_{x} x, & \dot{y}=-M_{y} y+b_{2} x y+b_{5} y z, & z=-z ; \\
\dot{x}=M_{x} x+a_{4} x z, & \dot{y}=-M_{y} y+b_{4} \times z+a_{4} y z, & \dot{z}=-z ; \\
\dot{x}=M_{x} x+a_{5} y z, & \dot{y}=-M_{y} y+b_{2} \times y, & \dot{z}=-z-b_{2} \times z ; \\
\dot{x}=M_{x} x, & \dot{y}=-M_{y} y, & \dot{z}=-z+c_{4} x z
\end{array}
$$

However, the Maple-17 system gives finite solutions for all cases above.

General Three-dimensional System

Finally, we considered the general case of a three-dimensional system with 20 parameters

$$
\begin{aligned}
& \dot{x}=\quad M_{x} x+a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x z+a_{5} y z+a_{6} z^{2}, \\
& \dot{y}=-M_{y} y+b_{1} x^{2}+b_{2} x y+b_{3} y^{2}+b_{4} x z+b_{5} y z+b_{6} z^{2} \\
& \dot{z}=\quad-z+c_{1} x^{2}+c_{2} x y+c_{3} y^{2}+c_{4} x z+c_{5} y z+c_{6} z^{2} .
\end{aligned}
$$

Calculating the normal form up to 6th order for 4 pairs $\left\{M_{x}, M_{y}\right\}=$ $\{1,1\},\{1,2\},\{2,1\}$ and $\{2,2\}$, we got a system of 121 equations for 18 parameters. We found 174 solutions for it. For 109 of the found sets of parameters the MATHEMATICS-13.3.1.0 system calculated solutions to the corresponding dynamical systems.

Hypothesis

We seek integrability by solving the local integrability condition at all stationary points of the system with resonances in the linear parts. But at all other points of the phase space, local integrability takes place without any conditions, so the basis of our technique can be formulated as a hypothesis

Hypothesis

For the existence of the first integral in a certain domain of the ODEs phase space, local integrability is required in the neighborhood of each point in this domain.

Conclusions

- There is a empirical technique for searching for analytically solvable cases of dynamical systems. This works both for the case of resonance in the linear part of the system, and for the general case.
- The proposed technique has no restrictions on the dimension of the system.
- There are many cases of solvable polynomial dynamical systems. Appropriate analytical solutions can be useful in applications such as chemical kinetics models, etc.

Bibliography I

A.D. Bruno, Analytical form of differential equations (I,II). Trudy Moskov. Mat. Obsc. 25, 119-262 (1971), 26, 199-239 (1972) (in Russian) = Trans. Moscow Math. Soc. 25, 131-288 (1971), 26, 199-239 (1972) (in English).
A.D. Bruno, Local Methods in Nonlinear Differential Equations. Nauka, Moscow 1979 (in Russian) = Springer-Verlag, Berlin (1989) P.348.

Q Edneral V. F., Krustalev O. A., Package for reducing ordinary differential-equations to normal-form. Programming and Computer Software 18, \# 5 (1992) 234-239.
V.F. Edneral, R. Khanin, Application of the resonance normal form to high-order nonlinear ODEs using Mathematica. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 502(2-3) (2003) 643-645.
D. Hilbert, Über die Theorie der algebraischen Formen. Mathematische Annalen 36 473-534 (1890).

Bibliography II

N N.N. Bautin, N.N., On the Number of Limit Cycles Which Appear with the Variation of the Coefficientsfrom an Equilibrium Point of Focus or Center Type. AMS Transl. Series 1, 1962, vol. 5, pp. 396-414.

Q V.A. Lunkevich, K.S. Sibirskii, Integrals of General Differential System at the Case of Center. Differential Equation, 18,\# 5 (1982) 786-792 (in Russian).
E. Kamke, DIFFERENTIALGLEICHUNGEN. Leipzig (1959).
© M. D. Korzukhin, A. M. Zhabotinsky Mathematical modeling of chemical and environmental self-oscillating systems. M.: Nauka (1965).

Many thanks for your attention

