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INTRODUCTION

Problem formulation

We investigate the application of computer algebra systems to the
summation of trigonometric Fourier series. Fourier series associated
with problems of mathematical physics are not analytic functions of
a complex argument. Therefore, an attempt to find the sum of the
Fourier series in closed form using CAS leads to transcendental
functions. At the same time, often these sums are elementary
functions of a real variable, piecewise given elementary functions.
This class of functions is not included in the class of elementary
Liouville functions.
In this talk, we present the first functions of the «Kryloff for Sage»
software package, which make it possible to determine at least
some of the cases in which the Fourier series represents an
elementary function of a real argument.
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Start point: simplest Green’s function



∂2g

∂t2
=
∂2g

∂x2
, 0 < x < π, t > τ, 0 ≤ τ < +∞;

g|t=τ = 0,
∂g

∂t

∣∣∣∣
t=τ

= δ(x− s), 0 < x < π, 0 < s < π;

g|x=0 = 0, g|x=l = 0, τ < t < +∞

(1)

Here δ(x− s) is Dirac delta function. The Green’s function g can
be found as a Fourier series [Tikhonov, Samarskii]:

g =
2

π

∞∑
n=1

1

n
sinn(t− τ) sinns sinnx. (2)

This series has been studied by many authors, but is not presented
in the available literature in finite terms.
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Theorem
The Green’s function g can be presented in finite terms as the
expression:
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Alternative expression has the form:

g =
1

2

([
x− s+ T

2π

]
+

[
−x+ s+ T

2π

]
−
[
−x− s+ T

2π

]
−
[
x+ s+ T

2π

])
.

Here [·] means «floor», T = t− τ .
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Our Research

Leaving aside further mathematical studies of Green’s functions, we
fix the following questions:

Can we find such kind of expressions in finite terms of Fourier
series in moderm CAS?
What kind or expressions for series can we find for Green’s
functions and other Fourier series using computer instruments?
Is it possible to systematize the cases in which the sum of the
series presents in finite terms? Does such a systematization
allow implementation in CAS?
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Fourier series summation, g

The simplest Green’s function g in finite terms in CAS Maple’2019.
We can see satisfactory result, but too difficult for users. We
cannot find this result without assuming, because this
representation does not hold for arbitrary complex values of x, s, t.
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Fourier series summation, g

The simplest Green’s function g in finite terms in CAS Sage.
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Another Green’s function, g̃

Consider the series:

g̃ =
4

π

∞∑
k=0

1

2k + 1
sin

(
k +

1

2

)
x sin

(
k +

1

2

)
s sin

(
k +

1

2

)
(t−τ).

In finite terms:

g̃ =
1

4

(
sign sin

x− s+ t− τ
2

+ sign sin
−x+ s+ t− τ

2
+

sign sin
x+ s− t+ τ

2
+ sign sin

−x− s− t+ τ

2

)
.

This test turned out to be much more difficult.
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Another Green’s function, g̃
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Fourier testing results: tipycal series from textbook

This is the series for motion of finite string. It satisfies the initial
condition u(0, x) = ϕ(x) = x2(1− x).

u =

∞∑
n=1

8 · (−1)n+1 − 4

π3n3
sin(πnx) cos(πnct)

Maple’2019 is able to convert the infinite series in symbolic
expression, namely

u =
2i

π3

(
Li3(−ei·π(x+ct))− Li3(−e−i·π(x+ct))+

+Li3(−ei·π(x−ct))− Li3(−e−i·π(x−ct))
)
−

− i

π3

(
Li3(e

−i·π(x+ct))− Li3(e
i·π(x+ct))+

+Li3(e
−i·π(x−ct))− Li3(e

i·π(x−ct))
)
.

Here Li3(z) is Euler’s polylogarithm.
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Fourier testing results: tipycal series from textbook

But obviously, at every moment of time it is a piecewise
polynomial function! It is obviously, because we can convert the
product sin · cos to the sum of sines. The symbolic expression of
the function u in finite terms again requires the piecewise
constructions sign or arctan(cot). There is an alternative: work in
the field of complex numbers C and use special functions, or work
in the field of real numbers R and use piecewise elementary
functions. The bridge between the two representations in finite
terms is the Fourier series.



Kryloff for Sage
ALTERNATIVE

A.N. Krylov’s technique Fourier series

The direct application of CAS to the summation of Fourier series
can lead to difficulties.

One can try to overcome them by
changing the formulation of the
problem: instead of the
summation problem in the finite
terms, consider the problem of
accelerating the convergence of
the Fourier series. As Krylov
wrote, this technique «often
leads to the representation of the
sum of the proposed series in
closed form under the guise
piecewice function».
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Krylov’s technique in moderm mathemathical physics

А. Б. Нерсесян “Ускорение сходимости разложений по
собственным функциям”, Докл. НАН Армении. 2007.
А. П. Хромов, М. Ш. Бурлуцкая, “Классическое решение
методом Фурье смешанных задач при минимальных
требованиях на исходные данные”, Изв. Сарат. ун-та. Нов.
сер. Сер. Математика. Механика. Информатика, 14:2
(2014), 171–198
Adcock B. Modified Fourier expansions: theory, construction
and application / Trinity Hall University of Cambridge, 2010.
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A.N. Krylov’s method [L.V.Kantorovich, V.I. Krylov]
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V
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)
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1

n
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(
1
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)
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n=1

sinnx

n
=
π − x
2

, x ∈ (0, 2π]

∞∑
n=1

cosnx

n
= − log 2

∣∣∣sin x
2

∣∣∣ , .
We can see, that the simplest Green’s function g is the subject,
when this scheme has only ONE nontrivial step.



Kryloff for Sage
IMPLEMENTATION

Implementation in Sage

We will implement the above convergence acceleration scheme,
assuming that the given functions U and V are good enough. In
practice, the Fourier coefficient is a function of n, and it may not
be possible to expand it into a series in terms of 1

n . Let’s take a
class of functions where such a possibility exists: rational functions
of n. The main direction of our work is the symbolic study of a
series, and this class of functions has additional advantages:

The built-in functions of Sage allow to determine the
membership of a polynomial ring and its field of quotients.
This allows, sometimes, to determine: is a given Fourier series
a (piecewise) elementary function?
The fact that the series diverges can be easily established.
For this case, standard symbolic tools give the answer in the
form of transcendental functions, and comparison of the
results may be of independent interest.
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Implementation in Sage

For simplicity, today we will leave aside the question of
trigonometric transformations and the question of the periodic
extension of a piecewise function to a straight line.
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Main functions of the program

Here U is the function U(n) given by symbolic expression. The
prefixes c and s are used to indicate which series is being
considered: by cosines (c ) or by sines (s).

is_elementary_c(V)|
c_series(V,M)|, summation_c(V)|. Finding a partial
sum of order M and a sum in closed form using sage
tools.
kryloff_c_slow(V,k)| Returns the expression in
closed form for the slowly converging part of the
Fourier series. The Taylor polynomial of order k
is used. Only those terms are singled out that
lead to expressions in elementary functions
(logarithm and Bernoulli polynoms).
c_rapid(V,k,M)| Returns the order M partial sum of
the accelerated convergence series.
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Examples

sage: load(’kryloff-1.sage’)\\
sage: U=x/(x^2+1)\\
sage: summation_s(U)\\
1/4*(imag_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(I*z))) -\\ imag_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(-I*z))) -\\ I*real_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(I*z))) +\\ I*real_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(-I*z))))*cos(z) + \\1/4*(I*imag_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(I*z))) +\\ I*imag_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(-I*z))) + \\real_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(I*z))) + \\real_part(hypergeometric((2, -I + 1, I + 1), (-I + 2, I + 2), e^(-I*z))))*sin(z)
sage: f=s_series(U,40)\\
sage: g=kryloff_s_slow(U,5)+s_rapid(U,5,3)\\
sage: m=plot([f,g],z,0,2*pi)
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The series
∞∑
n=1

n
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sinnx. Blue line: partial sum of 40 terms. Green line: the

sum of elementary part of 5 terms and 3 terms accelerated series.
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Examples: logarithm singularity
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The series
∞∑
n=1

1
n+1 cosnx.

Blue line: partial sum of 400 terms. Green line: the sum of
elementary part of 5 terms and 5 terms accelerated series. Red line:
elementary answer (but this is not basic series).
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Summary: results, presented in the talk

1 We present a simple emplementation of A.N. Krylov’s metod
of Fourier series convergence acceleration

2 This emlementation can give closed-form representation for
several cases of Fourier series

3 Functions of the package «Kryloff for Sage» can be adapted
to another eigenfunctions: sin(n+ 1

2) and other cases of
series, typical for mathematical physics
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Unsolved problems

1 The presented implementation of convergence acceleration can
lead to finite expressions for series in a very narrow class of

cases. Even the series
∞∑
n=1

1
n+1 cosnx does not fall into it.

2 Acceleration of convergence based on the Taylor expansion of
the Fourier coefficient in a Taylor series cannot, in the general
case, lead to acceleration of convergence to an arbitrary order
of decrease in the Fourier coefficient.

Therefore, further research into the issue is necessary.
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The main idea

Let us remember why it was necessary to accelerate the
convergence of the Fourier series in the first place? This procedure
was absolutely necessary for working with solutions presented in the
form of series, since each calculation of the derivative of such a
series usually slows down convergence. At the same time, it is not
difficult to encounter problems in which the corresponding
differentiation of the required order leads to a divergent series. In
this case, the desired function itself can be arbitrarily smooth within
the domain of consideration. Accelerating convergence singled out
the slowly converging parts of the Fourier series; they can be
replaced with finite expressions, and remove the problem of finding
the derivative in the form of a divergent series.
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The main idea

Note that the trigonometric Fourier series we are studying can be
considered not as ordinary functions, but as elements of the
distribution space D′(−π, π) [Laurent-Möıse Schwartz, Teorie des
distributions, 1950]. That is, as generalized functions. Every
generalized function has derivatives of any order. It can be proven
that the Fourier series of a generalized function, if it is locally
integrable, can be obtained using the usual Fourier formulas. It can
be proven that this Fourier series will converge in the distribution
space D′(−π, π). It can be proven that in the sense of the space
D′(−π, π) it can be differentiated term-by-term any number of
times! In this case, in the classical sense, divergent Fourier series,
with which Krylov struggled, will inevitably arise.
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The main idea. Differetiation of the basic series.

d

dx

∞∑
n=1

sinnx

n
=

∞∑
n=1

cosnx = −1

2
+ πδ(x), x ∈ [−π, π]

d

dx

∞∑
n=1

cosnx

n
= − d

dx

(
log 2

∣∣∣sin x
2

∣∣∣) = −
∞∑
n=1

sinnx = −1

2
cot

x

2
,

x ∈ [−π, 0) ∪ (0, π]
These equalities should be understood as equalities of generalized
functions from the distribution space D′(−π, π). Justifications for
them as equalities for elements of distribution spaces can be found
in [Gelfand, Shilov], [Antosik, Mikusinsky, Sikorski].
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The main idea. Basic divergent series.

∞∑
n=1

cosnx = −1

2
+ πδ(x), x ∈ [−π, π]

∞∑
n=1

sinnx =
1

2
cot

x

2
,

∞∑
n=1

n cosnx = −1

4

(
sin

x

2

)−2
,

∞∑
n=1

n sinnx = −πδ(1, x), x ∈ [−π, π].

These equalities should be understood as equalities of generalized
functions from the distribution space D′(−π, π). Justifications for
them as equalities for elements of distribution spaces can be found
in [Gelfand, Shilov], [Antosik, Mikusinsky, Sikorski].



Kryloff for Sage
DIVERGENT SERIES

The main idea. How we will use divergent series.

We will take advantage of the opportunity to express the indicated
series in closed form, and the opportunity to differentiate the
Fourier series term by term any number of times. If the Fourier
series has the form

∞∑
n=1

P

Q
sinnx = y, x ∈ [−π, π], P ∈ Q[n], Q ∈ Q[n],

then it is not difficult to find an expression for the differential
polynomial LQ that “annihilates” the denominator in the fraction
P
Q , so that for y we get the equation

LQy = fPQ, x ∈ [−π, π].

On the right side is the distribution f, which is expressed in final
form. Note that if the polynomial Q in the denominator of the
Fourier coefficient depends only on n2, then the expression for f is
entirely determined by the numerator - the polynomial P .
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Finding of the sum

1 Reconstruct the operator LQ and the right-hand side fP .
2 If the right-hand side is composed only of the Dirac delta

function and its derivatives, the given Fourier series is found in
elementary functions.

3 If the right-hand side contains a cotangent and its derivatives,
the ability to express the series in elementary functions
depends on the spectrum of the operator LQ. If there are
irrational eigenvalues, or multiple eigenvalues, expressions in
elementary functions cannot be composed.
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Fundamental Fourier Series

∞∑
n=1

1

n+ λ
sinnx = y,

∞∑
n=1

1

n− λ
sinnx = z.

"Annihilation":
d2y

dx2
+ λ2y = πδ(1, x) +

λ

2
cot

x

2
, y(−π) = 0, y(π) = 0;

d2z

dx2
+ λ2z = πδ(1, x)− λ

2
cot

x

2
, y(−π) = 0, y(π) = 0; .

The ability to find an expression for the sums in elementary
functions is reduced to the ability to find an integral of the form∫

sinλx cot
x

2
dx.

This is possible if lambda is a rational number [Liouvill, Hardy].
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Fundamental Fourier Series

∞∑
n=1

1

n2 + λ2
sinnx = y,

∞∑
n=1

1

n2 − λ2
sinnx = z.

"Annihilation":

d2y

dx2
− λ2y = −1

2
cot

x

2
, y(−π) = 0, y(π) = 0;

d2z

dx2
+ λ2z = −1

2
cot

x

2
, y(−π) = 0, y(π) = 0; .

The ability to find an expression for the sums in elementary
functions is reduced to the ability to find an integrals of the form∫

sinλx cot
x

2
dx,

∫
expλx cot

x

2
dx
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Fundamental Fourier Series

More complex simple fractions correspond to transcendental
functions associated with multiple integration of the form indicated
above, and quadratures of the form∫

xd sinλx cot
x

2
dx, λ ∈ C, d ∈ N.
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Divergent series, WolframAlpha

This is consistent with the results of mathematical analysis.
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Fourier series summation, WolframAlpha

This is consistent with the results of mathematical analysis.
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Fourier series summation, WolframAlpha

This is something unexpected!
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Fourier series summation, WolframAlpha

This is something unexpected!
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L.A. Dikii, 1954

L. A. Dikii, “The zeta function of an ordinary differential equation
on a finite interval”, Izv. Akad. Nauk SSSR Ser. Mat., 19:4 (1955),
187–200.
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Fundamental Differential Equation, Kamke

d2y

dx2
+ λ2y = −1

2
cot

x

2
, y(−π) = 0, y(π) = 0;

For our purposes, only one value of a is suitable, a=1/2.
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Fundamental Differential Equation, WolframAlpha
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Fundamental Differential Equation, WolframAlpha
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Example-1, cos-series
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Example-1, cos-series
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Example-2, I.N. Pak Series

The series from the article I. N. Pak, “On the sums of trigonometric
series”, Uspekhi Mat. Nauk, 35:2(212) (1980), 91–144. Kernel has
stoped functioning!
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New functions in «Kryloff for Sage»

1 Function «SeriesToODE» to reconstruct the differential
equation for the Fourier series

2 Function «TheElementaryConvolution» for finding a solution
to a boundary value problem with a delta function and its
derivatives on the right sides. Based on the explicit form of
the Cauchy function and solving a system of linear algebraic
equations.

3 Function «KryloffDecomposition» for finding the sums of the
fundamental components of a Fourier series. Built on the basis
of Ostrogradsky decomposition and integration ODE by CAS
Sage.
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Summary: results, presented in the talk

1 The difficulties of symbolic summation of series can in some
cases be circumvented by using finite expressions for the sums
of divergent Fourier series.

2 The basis of this approach is the theory of generalized
functions based on the space D’, within the framework of
which work with a certain class of divergent series becomes
updated and acquires a purely algebraic character

3 Some functions for summing series have been implemented.
Certain problems that could not be solved in final form using
the conventional version of the convergence acceleration
method are now available for solution.
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