
Paradoxes of Game Semantics
(updated)

PCA-24, St.-Petersburg

Sergei Soloviev
1)IRIT, University of Toulouse-3

2)Saint-Petersbourg Electrotechnic University (LETI)

19 April 2024

1

Verifier-Falsifier Games and Game Semantics

The Game Theoretic Semantics (GTS) was developed initially as a
variant of verification procedure for existing logical semantics. This
semantics could be classical, constructive etc.
In this talk I will first outline the bases of GTS. I will also consider
briefly some variants of this approach and problems studied in the
literature.
References to this part: Thierry Coquand (1995), Denis Bonnay
(2004), Boyer and Sandu (2012), Odintsov, Speranski, Shevchenko
(2018).
I plan also to explore how the GTS may be modified, or even
“perversed”, due to asymmetry between players. In particular,
but not only, to a difference in computational power.
The “most challenging” example uses the generealized Ramsey theorem

2

Verifier-Falsifier Games and Game Semantics

Basic definition
Semantical games are played with first-order sentences in a given
model M which interprets the function and relation symbols of the
relevant formal language.
The truth (satisfaction) in M of an atomic formula is supposed to be
fixed.
The two players, Verifier and Falsifier play to establish the truth
(falsity) of a given (compound) sentence in M.
∨-move (Verifier), ∧-move (Falsifier) - choice of disjunct (conjunct).
∃-move (Verifier), ∀-move (Falsifier) - choice of individual ∈ M

The players move along the syntactic tree of a given formula A. The
play is always finite since an atomic subformula will be reached after a
finite number of moves.

3

Verifier-Falsifier Games and Game Semantics

If A is true, the play is a win for Verifier; if false, it is a win for Falsifier.
Truth of a formula is equated with existence of a winning strategy for
the Verifier, that is, a set of instructions which give Verifier a win no
matter what Falsifier does. Falsity is defined analogously.

A standard example.
Consider A = ∃x0∀x1.x0 ≤ x1.
Consider the game played on the standard model N.
The collection of strategies of Verifier consists of individuals (natural
numbers).
One, 0, is winning: for any number n selected by Falsifier 0 ≤ n.

4

Verifier-Falsifier Games and Game Semantics

In Hintikka’s semantical games, the strategies of Verifier are Skolem
functions, and those of Falsifier are Kreisel’s counter-examples.
(Boyer/Sandu)
The works that I cited consider GTS for classical logic, so implication
is not treated, negation can be moved to atomic formulas etc. Since
the aim is exploration of influence of asymmetry between players it is
not a principal point.
There are of course other works concerning GTS for other logics,
including intuitionistic/constructive.
Also, exploring connections with realizability:
S. Odintsov, S. Speranski, I. Shevchenko. Hintikka’s
Independence-Friendly Logic Meets Nelson’s Realizability. Studia
Logica, 2018.

5

Verifier-Falsifier Games and Game Semantics

The authors of GTS understood the drawbacks of the definition
outlined above. Most basic: the proof in a first-order system is an
effective notion, whereas truth is not.
Hintikka (1996): The demand of playabilty might seem to imply
that the set of the initial Verifier’s strategies must be restricted.
For it does not seem to make any sense to think of any actual
player as following nonconstructive (nonrecursive) strategy.
A possible solution: restrict semantical games to the games played
only on recursive structures with recursive strategies.
CGTS ′-truth (computable game-theoretic semantics truth): a
sentence φ is GTCS-true on recursive model M exactly when
there is a computable winning strategy for Verifier in the
semantic game played with φ on M (Boyer/Sandu)
With free variables this is relativized to an assignment.

6

Verifier-Falsifier Games and Game Semantics

Boyer and Sandu then consider the case when the structure M is N,
since N is the only recursive structure of PA (up to isomorphism), by
Tennenbaum’s theorem.
So they consider effective winning strategies for Verifier in semantic
games played on N.
Example. On the standard structure N the Verifier has a computable
winning strategy for the sentence ∀x0∃x1.(x0 ≥ x1) iff there is a
recursive function f : N → N such that for all n ∈ N, n ≥ f (n). That
is, N| =CGTS ∀x0∃x1.(x0 ≥ x1)

More generally, for any binary predicate F (x , y), N| =CGTS

∀x∃!y .F (x , y) ⇐⇒ F (x , y) defines a total recursive function.

7

Verifier-Falsifier Games and Game Semantics

Two questions:
1 Whether the proofs in PA do yeld CGTS-truth?

PA ` φ⇒ PA| =CGTS φ?

Here Γ| =CGTS φ is defined by the condition that in all recursive
models M: if for all ψ ∈ Γ, M| =CGTS ψ, then M| =CGTS φ.

2 Can the CGTS-truth of a sentence be always interpreted as given by a
proof?

PA| =CGTS φ⇒ PA ` φ?

And, thus PA| =CGTS φ ⇐⇒ PA ` φ?

The answer to both questions (within standard approach) is
negative.

8

Verifier-Falsifier Games and Game Semantics

To (1) a counterexample is given by the sentence

∀x1∀x2∃y∀z .(Halt(x1, x2, y) ∨ ¬Halt(x1, x2, z)).

Here H(x1, x2, z) is the predicate that represents the “halting” of the
Turing mashine encoded by x1 on x2 after z steps. There is no
recursive winning strategy for Verifier on N since othewise the halting
problem would be decidable.
But the sentence is provable in PA.

9

Verifier-Falsifier Games and Game Semantics

The answer to (2) is negative as well.
Consider φ of the form ∀x∃!y .F (x , y).

N| =CGTS ∀x∃!y .F (x , y) ⇐⇒ F (x , y)

defines a total recursive function.
Taking into account the Tennenbaum’s theorem we would have

PA ` ∀x∃!y .F (x , y) ⇐⇒ F (x , y)

but then the set of total recursive functions would be recursively
enumerable.

10

The Games with Backward Moves

To obtain a positive answer to at least (1) several authors have
modified the notion of semantic game.
Coquand (1995), Krivine (2003), Bonnay (2004).
They introduced an important asymmetry: one of the players (in their
work the Verifier) is permitted to go back and change a move.
They introduce the games with backward moves.
(Chess players call it also “replay”.)

11

The Games with Backward Moves

The Main Differences:
Whenever its turn to move, Verifier can return to any one of its earlier
decision points and remake the choice; the play then continues as in
the standard game -
even if the false atomic formula is reached (win for Falsifier in the
standard game) return to one of the earlier decision points for Verifier
is permitted (and the play then continues as in the standard game)
Verifier wins a play if it is finite and it ends with a true atomic
formula, otherwise Falsifier wins (in case of infinite play that is now
possible as well).
Now both players may have more strategies that in standard games. It
has important consequences.

12

The Games with Backward Moves

Example (Coquand). Consider the backward game for
(∃m∀x .f (x) ≤ m) ∨ (∀n∃y .n < f (y)) played on N (f arbitrary
function). The Verifier has the following winning strategy (not in the
standard game):
V. chooses the right disjunct;
F. chooses a value n0 for n;
V. goes back, chooses the left disjunct and n0 for m

F. chooses some x0 for x ;
Now, if x0 ≤ n0 = m, then V. wins.
Otherwise, if f (x0) > n0 = m, V. goes back to its choice of disjunct,
and chooses instead to continue on the basis of the right disjunct
again after the choice made by F.,
that is, where n = n0, and V. may choose y = x0 and win the play
because n0 < f (x0).

13

The Games with Backward Moves

For the formula

∀x1∀x2∃y∀z .(Halt(x1, x2, y) ∨ ¬Halt(x1, x2, z))

the Verifier has now a winning strategy as well!
In the beginning F chooses x1 = m1 an x2 = m2;
V has to choose some y = n;
now it is F’s turn, it has to choose z = p;
V may choose a disjunct; but it looks first what the value of disjuncts
is: if Halt(m1,m2, n) is true it chooses this disjunct;
if it is false and ¬Halt(m1,m2, p) is false then Halt(m1,m2, p) is true;
V goes backwards, chooses y = p and (after any choice of z = p′ by
F) chooses the left disjunct. And wins.

14

The Games with Backward Moves

There are two theorems proved by Denis Bonnay.
The first one speaks about any strategies, not only computable.
Theorem 1. For any first order formula φ, structure M and
assignment g , Verifier (Falsifier) has a winning strategy in the
standard semantical game G (M, φ, g) iff it has a winning strategy in
the corresponding game with backward moves.
Theorem 2. If M is a recursive model, π is a proof (in classical logic)
of Γ ` φ and recursive winning strategies {fi}i∈Γ for Verifier are given
for each game G ∗(M, φi , ∅) with backward moves, with φi ∈ Γ, then π
yelds a recursive winning strategy for Verifier in G ∗(M, φ, ∅).

15

The Games with Backward Moves

So, Bonnay’s theorem 2 says that if φ is provable classically, then
there is a winning strategy for Verifier. This gives a positive
answer (for games with backward moves) to the first question
mentioned above.
The answer to the second question, whether the existence of
winning strategy for V implies provability, remains negative.
The price of this one positive answer is introduction of an important
asymmetry between players.
The asymmetry is not in computation power, but this so to say
“opens the way” . (Justifies other variants.)
And the fact that the answer to (2) remains negative makes us to ask,
what strange formulas may be “proved by winning”?

16

Computational Asymmetry

Example. Let φ = ∃x∀y .(y ≤ A(x)). Let here A be the
Ackermann’s function, and let the class of strategies of Falsifier be
limited to primitive recursive functions.
The strategies of Verifier are just natural numbers (values of x). If f is
some strategy of Falsifier, its answer is f (x). The formula is false on
N, but there is no winning strategy for Falsifier because A grows
faster than any PR function.
The games themselves are yet symmetric (no backward moves), we
can consider ψ = ∀x∃y .(A(x) < y) (which is true), and here the
Verifier will have no winning strategy if its strategies are PR.
In fact, both don’t have winning strategy in my example. So, it is not
yet an example when the more powerful player can completely
“perverse” the semantics. However:

17

Computational Asymmetry

Assume that V can compute any general recursive function and knows
(and can compute) a universal function U(x , y) for the strategies f of
F, i.e., every f = U(k,−) for some k .
Assume that if V knows the strategy of F it can win. That is, V can
compute another function W (x , y) such that vk = W (k ,−) wins
against fk = U(k ,−).
Here x ∈ N but we may assume that y ∈ N are the codes of partial
plays (including backward moves).
Remark. In our work Falsifier can (in its strategy) take into account
the backward moves. But is does not change main result.

18

Computational Asymmetry

Theorem. In the conditions listed above the Verifier has a recursive
strategy that wins against any strategy of the Falsifier.
Proof. The winning strategy of Verifier is constructed using “testing of
hyptheses”. Initial hypothesis is that F uses the strategy f0 = U(0,−).
When the current hypothesis has number k (that the strategy of F is
fk = U(k,−)), V plays using his strategy vk = W (k,−) while the
moves of F are as predicted. If they are not then V returns to the
initial position and passes from k-th hypothesis to the k + 1-th.
Remark. They can arrive to a position that is losing to V in the
standard formulation of the game, but in the game with backwards
moves V can backtrack. So this case is also included in the description
of the strategy of V.
V wins either when it arrives to the correct hypothesis or before. So
the problem of “true” number of strategy remains indecidable.

19

Computational Asymmetry

Example with Ackermann function (continued)
If the strategies of Falsifier do not take into account the backward
moves, the application of the theorem is very simple.
A strategy f of F is a PR function f : N → N.
Let U(k, y) be a universal function for PR functions.
The function W (k) is µx .(U(k, x) ≤ A(x)) (the second argument is
absent because we need only the intial value).
It is general recursive (by classical results of Kleene).
The winning strategy for V backtracks if f (W (k)) > A(W (k)) and
chooses W (k + 1).
Remark. Other solutions (not based on the theorem) are possible in
this example. Say, V can just take the values 0, 1, ... for x (backtrack
and choose k + 1 if f (k) > A(k)).

20

Computational Asymmetry

Example with Ackermann function (continued)
Let the strategies of Falsifier do take into account the backward
moves. In this example there is only one backward move, so we can
represent a partial play just by sequence of values of x (chosen by V)
“mixed” with the values of f (x).
This sequence may be represented by its number (using enumeration
of finite sequences of natural numbers).
If y is a sequence, let < y > be its number.
Next move of a player is given by the value v(< y >) (f (< y >)).
Strictly speaking, we should distinguish whose move there is, but it
can be done by appropriate convention.

21

Computational Asymmetry

Example with Ackermann function (continued)
Notice that if f is PR, then f (< y , x >) is PR on x when y is fixed.
We may pose W (k , y) = µx .(U(k, < y , x >) ≤ A(x)).
Again, by Kleene’s results, it is general recursive.
The rule proposed in the theorem (change k to k + 1 if
f (< y ,W (k , y) >) 6= U(< y ,W (k, y) >)) defines a general recursive
winning strategy of V.
(The change is determined by y as well.)
There are other winning strategies for V, not only based on the
theorem.

22

Computational Asymmetry

Instead of a Verifier-Falsifier game it may be useful to consider another
example, “just a game”, that illustrates the main principle of the theorem.

Example. Let the positions be natural numbers. Initial position 6= 0.
V and F simultaneously produce an element of N. If the elements are
the same, the position n→ n − 1. Othewise n→ n + 1.
Winning position for V is 0.
Here we consider just games, not semantic games. But to “update” is
not a problem.
In the conditions of our theorem (concerning strategies) V has a
general recursive strategy that wins against any strategy of F .

23

Computational Asymmetry

Next example shows how one may use hypotheses about strategies of F
instead of enumeration of strategies.

Example. Let F use only periodic strategies that do not depend on
moves of V . A strategy with the period n is represented by some finite
list of length n.
The set of all finite lists is enumerable. To win, V may use the
enumeration of finite lists.
There is another possibility: consider as an hypothesis the period p.
To construct a winning strategy, V may use the same idea as above:
the choice of V is the same as the choice of F has been p steps
before, if the current hypothesis is p.
The hypothesis is changed to p + 1 if the choice of F was different.
If S (instead of N) is not enumerable, this method works while
previous one does not.

It suggests a generalization of the theorem above that I will try to
formulate.

24

Computational Asymmetry

What are the requirements?
The hypotheses are predicates on possible strategies of F . They are
enumerated, so we may consider the predicate Pn = P(n,−) on the
set of possible strategies of F . Every possible strategy of F must
satisfy Pn for some n.
Hypotheses are associated with strategies of V , this is given by a
function U(n,−) on histories: V is supposed to play fn = U(n,−) “au
pair” with the hypothesis Pn against any g that satisfies Pn.
P(n, g)→Win(fn, g)

Since in the games with backward moves infinite plays are possible
(and are considered as “win” for F) some time bound for Win has to
be added. Let Winl(n,ω) denote win not later than l(n, ω) starting in
position ω.
Theorem similar to our theorem above may be obtained with the
condition P(n, g)→Winl(n,ω)(fn, g).

25

A more extreme example

Example. Generalized Ramsey theorem.
Recall (Ketonen-Solovay): A set of integers, S , is large if S is
non-empty, and (if s is its least element) S has at least s elements.
A being a set, b ∈ N, A[b] denotes the set of all subsets of A of
cardinality b. If F : A[b] → X , a subset B of A is homogeneous for F if
F is constant on B [b]. Each integer n is, as usual, identified with the
set of integers less than n.
For a, b, c ∈ N, a, b, c > 0, a→ (large)bc means that for every map
F : a[b] → c there is a large homogeneous set for F of cardinality
greater than b (this relation is PR).
(∀b, c ≥ 1)(∃a ≥ 1)(a→ (large)bc) is the generalized Ramsey’s
theorem. It is not provable in Peano Arithmetic, but provable in
second order arithmetic.

26

A more extreme example

Example. (Continued.)
We may consider the game associated with its classical negation

(∃b, c ≥ 1)(∀a ≥ 1)¬(a→ (large)bc)

The analysis of this game is similar to the example with Ackerman
function, but now the simple strategy of Verifier that consists in adding
1 to b and c for replay (if a replay will be necessary) wins against any
strategy of Falsifier that is provably general recursive in PA.

27

Conclusion

The context is rather that of scientific method, than purely
mathematical.
Often in everyday practice a massive computer based
testing/verification/simulaton is used to complete/supplant proof.
To rely on it, an absolute scientific integrity/honesty is expected. The
biais maybe inconsious or even intended. And what can be opposed? It
turns towards some sort of V/F game.
However, while the asymmetry of the rules (like backward moves for
one player) can be easily controlled, it is more difficult to detect and
estimate the difference in computational power.

THANKS FOR YOUR ATTENTION!

28

References

1 T. Coquand. A Semantics of Evidence for Classical Arithmetic. - J. of
Symb. Logic, 60, 1, 325-337 (1995)

2 J. Ketonen and R. Solovay. Rapidly Growing Ramsey Functions Ann.
of Math. Second S., 113, 2 (Mar., 1981), 267-314.

3 J.-L. Krivine. Dependent choice, ‘quote’ and the clock. TCS, 308, 1-3,
259-276 (2003).

4 D. Bonnay. Preuves et jeux sémantiques. Philosophia Scientiae, 8(2),
105-123 (2004).

5 J. Boyer, G. Sandu. Between Proof and Truth. Synthese, 187 ,
821-832 (2012).

6 S.P. Odintsov, S.O. Speranski, I.Yu. Shevchenko. Hintikka’s
Independence-Friendly Logic Meets Nelson’s Realizability. Studia
Logica, 637-670 (2018).

7 N. Yamada. Game semantics of Martin-Lof type theory. Preprint
submitted to RMS (2018)

29

