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Abstract. Quantum mechanics is based on two main points: (1) the assumption
that the evolution of a closed system is described by unitary transformations in
Hilbert space, and (2) the idea of observation, formalized in the concept of an
observable and canonical commutation relations between pairs of conjugate ob-
servables. We call such conjugate pairs complementary, since they form the basis
of Borh’s complementarity principle.

The combined use of complementary observables allows us to obtain the max-
imum available information about the state of a quantum system. Complementary
observables are related to such issues as the uncertainty principle, the principle
of least action, the path integral formulation of quantum mechanics, mutually
unbiased bases etc.

Replacing a continuous unitary group with a finite permutation group in the
quantum formalism [1–4] allows us to reduce the description of evolution to the
group of cyclic permutations ZN . The product of ZN and its Pontryagin dual,
Z̃N , has a nontrivial projective representation, which allows to describe quantum
interferences taking into account phase differences.

Thus, by starting with just a cyclic permutation, we obtain a complete finite
version of quantum mechanics, including unitary evolution and the complementar-
ity principle. Finite structures that stem from cyclic permutations are naturally
found in various fields, including quantum computer science and signal processing.
These finite structures were first discovered, within the framework of continuous
quantum mechanics, by Weyl when he constructed an analogue of the Heisenberg
canonical commutation relations suitable for finite-dimensional Hilbert spaces.

The generator of the regular representation of ZN on the N -dimensional
Hilbert space HN is the cyclic permutation matrix

X =


0 0 · · · 1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 .
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The matrix X is related to the basis BX = {|0⟩ , |1⟩ , . . . , |N − 1⟩}, called the
position basis. This basis has other names, such as ontic (G. ’t Hooft) or initial,
or computational (quantum computer science).

In this basis, the position operator has the diagonal form x̂ =

N−1∑
x=0

x |x⟩⟨x| .

If gcd(v,N) = 1, then the matrix Xv = Xv defines a cyclic evolution on the
eigenvalues of the position operator x̂t = Xt

vx̂0X
−1
v . In the components we have

xt = x0 + vt mod N.

Therefore, the parameter v can be interpreted as “velocity”.
The generator of the Pontryagin dual group Z̃N is

Z = X̃ = FXF ∗ =


1 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 · · · ωN−1

 ,

where F is the Fourier transform and ω = e2πi/N is the Nth base root of unity.
The basis BZ =

{∣∣∣0̃〉 ,
∣∣∣1̃〉 , . . . ,

∣∣∣Ñ − 1
〉}

formed by the eigenvectors of Z is called
the momentum basis.

The bases BX and BZ are interconnected by the Fourier transform, and they
are mutually unbiased.

A direct calculation reveals that XZ = ωZX. This is precisely the Weyl
canonical commutation relation. The operators X and Z generate a non-trivial
projective representation of the group ZN × Z̃N

∼= ZN × ZN on the space HN .
The main constructs derived from the matrices X and Z are:

• Weyl–Heisenberg group

H(N) =
{
τkXvZm

}
,

where τ = −ω1/2 = − eπi/N, v,m ∈ ZN , k ∈ ZN , N =

{
N, N is odd,
2N, N is even.

• Finite position-momentum phase space T 2 is a 2D discrete torus of size N×N .
• Symplectic group Sp(2,ZN ) is the group of symplectic transformations of the

phase space T 2.
• Clifford group Cℓ(N) ∼= H(N)⋊Sp(2,ZN ) is the normalizer of H(N) in U(N).

It is the group of all symmetries of the group H(N): Cℓ(N) ∼= Aut(H(N)).

The properties of the operators X and Z and the constructions derived from
them, as well as the possibility of decomposing the corresponding quantum system
into subsystems, are determined by the structure of the group ZN . A decomposition
of a cyclic group into smaller groups has the form

ZN
∼= Zn1

× Zn2
× · · · × Znm

, (1)
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where N = n1 · n2 · . . . · nm, gcd(ni, nj) = 1. The canonical decomposition takes
the form ZN

∼= Z
p
ℓ1
1
×· · ·×Zpℓm

m
, where N = pℓ11 · · · pℓmm is the prime factorization.

Mappings that provide isomorphism (1), which can be considered as an
isomorphism of rings, can be calculated using the Chinese remainder theorem.
Namely, for k ∈ ZN we have the mappings

k 7→ (r1, . . . , rm) ,

(r1, . . . , rm) 7→ k =

m∑
i=1

riN
−1
i Ni mod N,

where ri = k mod ni ∈ Zni , Ni = N/ni ∈ ZN , N−1
i ∈ Zni is the multiplicative

inverse of Ni within Zni
.

Dual mappings, which are more useful for many problems, have the form

k 7→ (k1, . . . , km) ,

(k1, . . . , km) 7→ k =

m∑
i=1

kiNi mod N, (2)

where ki = riN
−1
i ∈ Zni

. For example, the equation
k

N
=

∑
i

ki
ni

mod 1, (3)

which follows from (2), helps us to understand the additivity of the energy in a
composite quantum system: in representing the frequency of a system as a sum of
frequencies of subsystems, frequencies can be interpreted as corresponding energy
levels in accordance with the Planck relation, which states the equivalence of energy
and frequency.
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