Combinatorial Ky Fan theorem for sphere bundles

Gaiane Panina

(By a joint work with Rade Zivaljevic)
Combinatorial statements, such as theorems of Carathéodory, Radon, Helly, Sperner, Tucker, Ky Fan, etc., are fundamental results of combinatorial (algebraic) topology, accessible to non-specialists, which are immediately applicable to mathematical economics, data science, game theory, graph theory, mathematical optimization, computational geometry, and other fields.

The Ky Fan theorem is also a disguised combinatorial counterpart of the Borsuk-Ulam theorem. Recall its usual set-up: the standard unit sphere $S^{n} \subset \mathbb{R}^{n+1}$ is triangulated and the triangulation is assumed to be centrally symmetric. There is a labeling (coloring) of vertices of this triangulation

$$
\lambda: \operatorname{Vert}\left(S^{n}\right) \rightarrow\{ \pm 1, \ldots, \pm N\}
$$

which is

- antipodal, $\lambda(-v)=-\lambda(v) \quad \forall v \in \operatorname{Vert}\left(S^{n}\right)$, and
- $\lambda(v) \neq-\lambda(w)$ for each pair $\{v, w\}$ of adjacent vertices of the triangulation.

The alternating number $\operatorname{Alt}(\sigma)$ of a simplex is the number of sign changes in the labels of its vertices (which are ordered by the absolute values). For example $\operatorname{Alt}(-1,2,3,-4)=2 ; \quad \operatorname{Alt}(-1,2,-3,4)=3$, etc.

Clearly, the alternating numbers of a simplex and its antipodal one are equal. The maximal possible alternating number is n, and these simplices come in pairs. The Ky Fan theorem states that $n<N$, and the number of (pairs of) simplices with alternating number n is odd.

We shall address the following questions:
When is it possible to replace the triangulated sphere by some other triangulated manifold with a free \mathbb{Z}_{2}-action? What happens if one replaces a unique sphere S^{n} by a parameterized continuous family of spheres, that is, by the total space of some spherical bundle over a smooth manifold?

Our main results are:

- For a spherical bundle, there are "many" simplices with alternating number n; taken together, they form a closed pseudomanifold which is topologically as complicated as the base of the bundle.
- For non-trivial bundles one expects simplices with alternating numbers bigger than n. How much bigger depends on the Stiefel-Whitney classes of the bundle.
- Some explicit examples will be provided. They include spherical bundles associated to the tangent bundles of selected real and complex projective spaces.

Gaiane Panina

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences
Russia
e-mail: gaiane-panina@rambler.ru

