On multidimensional analogs of Euler (Tait-Bryan) angles and Grassmanians.

Mikhail V. Babich

joint work with L. A. Bordag, A. Khvedelidze, D. Mladenov LIT, Dubna

April 2024, SPb

The initial problem is a construction of "good-comfortable" coordinates on the space of Hermitian matrices \mathcal{H} .

This space has a natural stratification in accordance with the conjugated classes

$$\mathcal{H} = \bigsqcup_{J} \mathcal{O}_{J}$$
, where $\mathcal{O}_{J} := \bigcup_{g \in SU(N)} g^{-1}Jg.$

Here J runs all different diagonal matrices with the ordered diagonal values $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$.

I introduce the parametrization of a fixed orbit. It is a parametrization of the all splittings of \mathbb{C}^{N} on the sum of mutually orthogonal subspaces of the fixed dimensions:

$$\mathbb{C}^{\mathrm{N}}=(\mathrm{e}_{0})\stackrel{\perp}{\oplus}(\mathrm{e}_{1})\stackrel{\perp}{\oplus}(\mathrm{e}_{2})\stackrel{\perp}{\oplus}\cdots\stackrel{\perp}{\oplus}(\mathrm{e}_{\mathrm{m}-1})\stackrel{\perp}{\oplus}(\mathrm{e}_{\mathrm{m}}),$$

where dim (e_k) = n_k , $\sum_k n_k = N$.

In the simplest case when N = 3, $n_k = 1$ and everything is real, it is the parameterization of SO(3) \subset SU(3) (locally). The problem solved by L. Euler.

Euler angles.

A problem solved by Euler is the parametrization of the mutual positions of two orthonormal bases in \mathbb{R}^3 . He introduced three subsequent rotations around the axes and three angles of the rotations, see Fig. 1.

Figure: Euler angles α, β, γ .

It was L. Euler who introduced a principal concept that is "the line of nodes" \mathcal{N} .

Notations.

Let $\{x, y, z\}$ and $\{X, Y, Z\}$ be the initial and the finite positions of the orthogonal semi-axes. The intermediate positions we denote by the primes, like $\{x'', y'', z''\}$. letters in brackets like (x, y) are enveloping subspaces (planes). Let $\rho_{\kappa}(\phi)$ be a rotation around the axis κ , $\kappa \in \{x, y, z, x', y', ...\}$ on the angle ϕ . The subsequent rotations on Euler angles that coincide $\{x, y, z\}$ and $\{X, Y, Z\}$ are:

$$\{\mathbf{x},\mathbf{y},\mathbf{z}\} \stackrel{\rho_{\mathbf{z}}(\alpha)}{\to} \{\mathbf{x}',\mathbf{y}',\mathbf{z}\} \stackrel{\rho_{\mathbf{x}'}(\beta)}{\to} \{\mathbf{x}''=\mathbf{x}',\mathbf{y}'',\mathbf{Z}\} \stackrel{\rho_{\mathbf{Z}}(\gamma)}{\to} \{\mathbf{X},\mathbf{Y},\mathbf{Z}\}.$$

The axes of the rotations are z, Z and the line of nodes $\mathcal{N} = x' = x''$: $\mathcal{N} := (x, y) \cap (X, Y)$

that is an intersection of the initial and the finite positions of XY-coordinate planes.

Generalization. First attempt (unsuccessful).

Let us change the one-dimensional subspaces (axes) x, y, z by the multidimensional subspaces (e_1), (e_2), (e_3), and the rotation

$$\rho_{\rm z}(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

around the axis by some unitary transformation that is identical on E_3 and "rotates" (turns, maps, sends) subspaces (e₁) to (E₁) and (e₂) to (E₂).

$$(\mathbf{e}_1) \oplus (\mathbf{e}_2) = (\mathbf{E}_1) \oplus (\mathbf{E}_2) \sim \mathbb{C}^{\mathbf{n}_1 + \mathbf{n}_2}$$

The disadvantage:

There is no subspace among e_k which dimension is equal to the dimension of $(e_1, e_2) \cap (E_1, E_2)$ that is the analog of the line of nodes \mathcal{N} .

Tait–Bryan angles.

There is (classical) modification of the Euler's method named after P. G. Tait and G. H. Bryan. The main difference is another line of nodes $\mathcal{N}_{\text{TB}} := (x, y) \cap (Y, Z)$:

Figure: Tait-Bryan angles ϕ, θ, ψ .

$$\{\mathbf{x},\mathbf{y},\mathbf{z}\} \xrightarrow{\rho_{\mathbf{z}}(\psi)} \{\mathbf{x}',\mathbf{y}',\mathbf{z}\} \xrightarrow{\rho_{\mathbf{y}'}(\theta)} \{\mathbf{X},\mathbf{y}',\mathbf{z}'\} \xrightarrow{\rho_{\mathbf{X}}(\phi)} \{\mathbf{X},\mathbf{Y},\mathbf{Z}\}.$$

The subspaces \mathcal{N}_{TB} and (Y) have the same dimension: dim $\mathcal{N}_{TB} =$

 $\mathsf{dim}\ (x,y) + \mathsf{dim}\ (Y,Z) - N = (n_x + n_y) + (n_y + n_z) - (n_x + n_y + n_z)$

= n_y , and can be coincided by an element of the orthogonal group of the space $(z)^{\perp}$.

The position of the ordered pair of the orthogonal lines on a plane can be parametrized by the angle between two corresponding lines that is a point of \mathbb{PR}^2 .

All the splittings of $\mathbb{C}^{n_1+n_2}$ on two orthogonal subspaces $(e_1) \stackrel{\perp}{\oplus} (e_2)$, dim $(e_1) = n_1$, dim $(e_2) = n_2$ can be naturally identified with the points of the Grassmanian $G(n_1, n_1 + n_2) \simeq G(n_2, n_1 + n_2)$.

Multidimensional version of Tait–Bryan rotations.

Let the space $\mathbb{C}^{\mathbb{N}}$ be split on m + 1 mutually orthogonal subspaces:

$$\mathbb{C}^{\mathrm{N}}=(\mathrm{e}_{0})\stackrel{\perp}{\oplus}(\mathrm{e}_{1})\stackrel{\perp}{\oplus}(\mathrm{e}_{2})\stackrel{\perp}{\oplus}\cdots\stackrel{\perp}{\oplus}(\mathrm{e}_{m-1})\stackrel{\perp}{\oplus}(\mathrm{e}_{m}),$$

that we will transform, step-by-step, to "the fixed" splitting

$$\mathbb{C}^{N} = (\mathbb{E}_{0}) \stackrel{\perp}{\oplus} (\mathbb{E}_{1}) \stackrel{\perp}{\oplus} (\mathbb{E}_{2}) \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus} (\mathbb{E}_{m-1}) \stackrel{\perp}{\oplus} (\mathbb{E}_{m})$$

with the same dimensions of the corresponding subspaces. The first set of m steps Φ_1, \ldots, Φ_m (unitary) moves all subspaces (e₁), ..., (e_m) to the fixed subspace (E₁, ..., E_m) and, consequently, (e₀) to (E₀).

Let us denote $\mathcal{N}_1 := (e_0, e_1) \cap (E_0)^{\perp} \sim (e_1)$ and transform \mathbb{C}^N by a unitary transformation Φ_1 that is non-trivial on (e_1, e_0) and is identical on its orthogonal complement that is (e_2, \ldots, e_m) .

 Φ_1 moves (e₁) to $\mathcal{N}_1 =: (e'_1)$ and e_0 moves to some (e^1_0) that is orthogonal to (e'_1). So $\Phi_1 \in SU(N)$ moves (e_1) "inside" (e_1, e_0) into the given subspace of (E_0)^{\perp}. This subspace is \mathcal{N}_1 . Let us repeat the same action with (e₂) and (e₀¹). Φ_2 is identical on (e'₁, e₃, ..., e_m) and transforms whole (e₂, e₀¹) to itself. We denote (e₂, e₀¹) \cap (E₀)^{\perp} =: \mathcal{N}_2 , and set Φ_2 a unitary transformation that moves (e₂) to $\mathcal{N}_2 \subset (E_0)^{\perp}$

$$\Phi_2: (\mathbf{e}_2) \to \mathcal{N}_2 =: (\mathbf{e}_2'), (\mathbf{e}_0^1) \to (\mathbf{e}_0^2).$$

We continue in the same way. Φ_k is identical on $(e'_1, \ldots, e'_{k-1}, e_{k+1}, \ldots, e_m)$ and transforms whole (e_k, e_0^{k-1}) to itself. We denote $(e_k, e_0^{k-1}) \cap (E_0)^{\perp} =: \mathcal{N}_k$, and set Φ_k a unitary transformation that moves (e_k) to $\mathcal{N}_k \subset (E_0)^{\perp}$

$$\Phi_{k}:(e_{k})\rightarrow\mathcal{N}_{k}=:(e_{k}^{\prime}),(e_{0}^{k-1})\rightarrow(e_{0}^{k}).$$

After these m steps we get the same problem with the smaller dimension $N \rightarrow N - n_0$, $m \rightarrow m - 1$.

On the step number m we define Φ_m that is identical on $(e'_1, \ldots, e'_{m-1}) \supset (E_0)^{\perp}$ and transforms whole (e_m, e_0^{m-1}) to itself.

We denote $(e_m, e_0^{m-1}) \cap (E_0)^{\perp} =: \mathcal{N}_m$, and set Φ_m a unitary transformation that moves (e_m) to $\mathcal{N}_m \subset (E_0)^{\perp}$

$$\Phi_{\mathrm{m}}:(\mathrm{e}_{\mathrm{m}})\to\mathcal{N}_{\mathrm{m}}=:(\mathrm{e}_{\mathrm{m}}'),(\mathrm{e}_{0}^{\mathrm{m}-1})\to(\mathrm{e}_{0}^{\mathrm{m}}).$$

We see that all m mutually orthogonal subspaces split $(E_0)^{\perp}$ on the direct sum, consequently $(e_0^m) = (E_0)$.

Reduction of the dimension $N \rightarrow N - n_0$, m \rightarrow m - 1.

$$\mathbb{C}^{N-n_0} \sim (e_1') \stackrel{\perp}{\oplus} (e_2') \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus} (e_{m-1}') \stackrel{\perp}{\oplus} (e_m'),$$

that we will transform, step-by-step, to "the fixed" splitting of the same space

$$(E_1) \stackrel{\perp}{\oplus} (E_2) \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus} (E_{m-1}) \stackrel{\perp}{\oplus} (E_m).$$

The next set of m - 1 steps unitary moves all subspaces $(e'_2), \ldots, (e'_m)$ to the fixed subspace $(E_1)^{\perp} = (E_2, \ldots, E_m)$ and, consequently, (e'_1) to (E_1) . By acting in this way we will get the space $(E_{m-1}E_m)$ split on two orthogonal subspaces $(e^{(m)}_{m-1})$ and $(e^{(m)}_m)$ isomorphic to (E_{m-1}) and (E_m) correspondingly. We transform them to (E_{m-1}) and (E_m) by unitaty transformation. The space of Hermitian matrices \mathcal{H} is parametrized by the eigen-numbers of the corresponding eigen-spaces and points of Grassmanians:

$$\begin{array}{ccc} G(n_1, n_1 + n_0), G(n_2, n_2 + n_0), \dots, G(n_m, n_m + n_0) & \lambda_0 \\ G(n_2, n_2 + n_1), \dots, G(n_m, n_m + n_1) & \lambda_1 \\ & \vdots & \vdots \\ G(n_m, n_m + n_{m-1}) & \lambda_{m-1} \\ 0 & \lambda_m \end{array}$$

The manifold of subspaces on \mathbb{C}^2 is the Riemann sphere $\mathbb{PC}^2 = \mathbb{CP}^1 \ni (z : 1)$, or Bloch sphere: $\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta, \theta \in [0, \pi], \phi \in [0, 2\pi]$ in the spherical coordinates. The connection is $(z : 1) = (e^{i\phi} \sin \theta/2 : \cos \theta/2)$. The Cartesian coordinates of the point on the sphere $\mathbb{P}_1, \mathbb{P}_2, \mathbb{P}_3$ corresponding to z = x + iy are given by the stereographic projection

$$P_1 = \frac{2x}{1 + x^2 + y^2}, P_2 = \frac{2y}{1 + x^2 + y^2}, P_3 = \frac{1 - x^2 - y^2}{1 + x^2 + y^2}.$$

We get N(N-1)/2 complex numbers and N real numbers that are the eigenvalues, that is N^2 real parameters. It is the dimension of U(N).

Torus action.

There is a natural action of the torus T^N on the Grassmanian G(n, N):

$$(x_1, x_2, \ldots, x_N) \rightarrow (t_1 x_1, t_2 x_2, \ldots, t_n x_N),$$

where $(x_1, x_2, ..., x_N) \in (e_1, ..., e_N) \in G(n, N)$, $(t_1x_1, t_2x_2, ..., t_nx_N) \in T^N$.

There are two versions of the torus action, namely $|t_k| = 1$ – we call it "a real torus", and $t_k \in \mathbb{C}^*$, that is "a complex torus".

Complex torus action, evidently, has thee orbits on \mathbb{CP}^1 . The factorization moves \mathbb{CP}^1 to the discret set of three points, say (0:1), (1:0), (1:1).

Real torus action gives some realization of the presented complex theory. In the case of one-dimensional subspaces (e_k) the Bloch spheres become the unit circles parametrized by the real angle ϕ and U(N) becomes O(N).

Thank You!:)