On multidimensional analogs of Euler (Tait-Bryan) angles and Grassmanians.

Mikhail V. Babich

joint work with
L. A. Bordag, A. Khvedelidze, D. Mladenov

LIT, Dubna

April 2024, SPb

Super-task.

The initial problem is a construction of "good-comfortable" coordinates on the space of Hermitian matrices \mathcal{H}.

This space has a natural stratification in accordance with the conjugated classes

$$
\mathcal{H}=\bigsqcup_{\mathrm{J}} \mathcal{O}_{\mathrm{J}}, \text { where } \mathcal{O}_{\mathrm{J}}:=\bigcup_{\mathrm{g} \in \mathrm{SU}(\mathrm{~N})} \mathrm{g}^{-1} \mathrm{Jg} .
$$

Here J runs all different diagonal matrices with the ordered diagonal values $\lambda_{1} \leqq \lambda_{2} \leqq \cdots \leqq \lambda_{\mathrm{N}}$.

Subject of the talk.

I introduce the parametrization of a fixed orbit. It is a parametrization of the all splittings of \mathbb{C}^{N} on the sum of mutually orthogonal subspaces of the fixed dimensions:

$$
\mathbb{C}^{\mathrm{N}}=\left(\mathrm{e}_{0}\right) \stackrel{\perp}{\oplus}\left(\mathrm{e}_{1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{e}_{2}\right) \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus}\left(\mathrm{e}_{\mathrm{m}-1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{e}_{\mathrm{m}}\right)
$$

where $\operatorname{dim}\left(\mathrm{e}_{\mathrm{k}}\right)=\mathrm{n}_{\mathrm{k}}, \sum_{\mathrm{k}} \mathrm{n}_{\mathrm{k}}=\mathrm{N}$.
In the simplest case when $\mathrm{N}=3, \mathrm{n}_{\mathrm{k}}=1$ and everything is real, it is the parameterization of $\mathrm{SO}(3) \subset \mathrm{SU}(3)$ (locally). The problem solved by L. Euler.

Euler angles.

A problem solved by Euler is the parametrization of the mutual positions of two orthonormal bases in \mathbb{R}^{3}. He introduced three subsequent rotations around the axes and three angles of the rotations, see Fig. 1.

Figure: Euler angles α, β, γ.
It was L. Euler who introduced a principal concept that is "the line of nodes" \mathcal{N}.

Notations.

Let $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ be the initial and the finite positions of the orthogonal semi-axes. The intermediate positions we denote by the primes, like $\left\{\mathrm{x}^{\prime \prime}, \mathrm{y}^{\prime \prime}, \mathrm{z}^{\prime \prime}\right\}$. letters in brackets like (x, y) are enveloping subspaces (planes). Let $\rho_{\kappa}(\phi)$ be a rotation around the axis κ, $\kappa \in\left\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \ldots\right\}$ on the angle ϕ.
The subsequent rotations on Euler angles that coincide $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ are:

$$
\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \xrightarrow{\rho_{\mathrm{z}}(\alpha)}\left\{\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}\right\} \xrightarrow{\rho_{\mathrm{x}^{\prime}}(\beta)}\left\{\mathrm{x}^{\prime \prime}=\mathrm{x}^{\prime}, \mathrm{y}^{\prime \prime}, \mathrm{Z}\right\} \xrightarrow{\rho_{\mathrm{Z}}(\gamma)}\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\} .
$$

The axes of the rotations are z, Z and the line of nodes $\mathcal{N}=\mathrm{x}^{\prime}=\mathrm{x}^{\prime \prime}:$

$$
\mathcal{N}:=(\mathrm{x}, \mathrm{y}) \cap(\mathrm{X}, \mathrm{Y})
$$

that is an intersection of the initial and the finite positions of XY-coordinate planes.

Generalization. First attempt (unsuccessful).

Let us change the one-dimensional subspaces (axes) $\mathrm{x}, \mathrm{y}, \mathrm{z}$ by the multidimensional subspaces $\left(e_{1}\right),\left(e_{2}\right),\left(e_{3}\right)$, and the rotation

$$
\rho_{z}(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

around the axis by some unitary transformation that is identical on E_{3} and "rotates" (turns, maps, sends) subspaces $\left(\mathrm{e}_{1}\right)$ to $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{e}_{2}\right)$ to $\left(\mathrm{E}_{2}\right)$.

$$
\left(\mathrm{e}_{1}\right) \oplus\left(\mathrm{e}_{2}\right)=\left(\mathrm{E}_{1}\right) \oplus\left(\mathrm{E}_{2}\right) \sim \mathbb{C}^{\mathrm{n}_{1}+\mathrm{n}_{2}}
$$

The disadvantage:
There is no subspace among e_{k} which dimension is equal to the dimension of $\left(e_{1}, e_{2}\right) \cap\left(E_{1}, E_{2}\right)$ that is the analog of the line of nodes \mathcal{N}.

Tait-Bryan angles.

There is (classical) modification of the Euler's method named after P. G. Tait and G. H. Bryan. The main difference is another line of nodes $\mathcal{N}_{\mathrm{TB}}:=(\mathrm{x}, \mathrm{y}) \cap(\mathrm{Y}, \mathrm{Z})$:

Figure: Tait-Bryan angles ϕ, θ, ψ.

$$
\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \xrightarrow{\rho_{\mathrm{z}}(\psi)}\left\{\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}\right\} \xrightarrow{\rho_{\mathrm{y}^{\prime}}(\theta)}\left\{\mathrm{X}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right\} \xrightarrow{\rho_{\mathrm{X}}(\phi)}\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\} .
$$

Dimension of $\mathcal{N}_{\text {TB }}$.

The subspaces $\mathcal{N}_{\mathrm{TB}}$ and (Y) have the same dimension: $\operatorname{dim} \mathcal{N}_{\text {TB }}=$
$\operatorname{dim}(\mathrm{x}, \mathrm{y})+\operatorname{dim}(\mathrm{Y}, \mathrm{Z})-\mathrm{N}=\left(\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}\right)+\left(\mathrm{n}_{\mathrm{y}}+\mathrm{n}_{\mathrm{z}}\right)-\left(\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}+\mathrm{n}_{\mathrm{z}}\right)$
$=\mathrm{n}_{\mathrm{y}}$, and can be coincided by an element of the orthogonal group of the space $(\mathrm{z})^{\perp}$.

Generalization of the set of rotations of plane.

The position of the ordered pair of the orthogonal lines on a plane can be parametrized by the angle between two corresponding lines that is a point of $P \mathbb{R}^{2}$.

All the splittings of $\mathbb{C}^{\mathrm{n}_{1}+\mathrm{n}_{2}}$ on two orthogonal subspaces $\left(e_{1}\right) \oplus\left(e_{2}\right), \operatorname{dim}\left(e_{1}\right)=n_{1}, \operatorname{dim}\left(e_{2}\right)=n_{2}$ can be naturally identified with the points of the Grassmanian
$\mathrm{G}\left(\mathrm{n}_{1}, \mathrm{n}_{1}+\mathrm{n}_{2}\right) \simeq \mathrm{G}\left(\mathrm{n}_{2}, \mathrm{n}_{1}+\mathrm{n}_{2}\right)$.

Multidimensional version of Tait-Bryan

 rotations.Let the space \mathbb{C}^{N} be split on $\mathrm{m}+1$ mutually orthogonal subspaces:

$$
\mathbb{C}^{\mathrm{N}}=\left(\mathrm{e}_{0}\right) \stackrel{\perp}{\oplus}\left(\mathrm{e}_{1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{e}_{2}\right) \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus}\left(\mathrm{e}_{\mathrm{m}-1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{e}_{\mathrm{m}}\right)
$$

that we will transform, step-by-step, to "the fixed" splitting

$$
\mathbb{C}^{\mathrm{N}}=\left(\mathrm{E}_{0}\right) \stackrel{\perp}{\oplus}\left(\mathrm{E}_{1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{E}_{2}\right) \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus}\left(\mathrm{E}_{\mathrm{m}-1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{E}_{\mathrm{m}}\right)
$$

with the same dimensions of the corresponding subspaces. The first set of m steps $\Phi_{1}, \ldots, \Phi_{m}$ (unitary) moves all subspaces $\left(e_{1}\right), \ldots,\left(e_{m}\right)$ to the fixed subspace $\left(E_{1}, \ldots, E_{m}\right)$ and, consequently, $\left(\mathrm{e}_{0}\right)$ to $\left(\mathrm{E}_{0}\right)$.

Step 1.

Let us denote $\mathcal{N}_{1}:=\left(\mathrm{e}_{0}, \mathrm{e}_{1}\right) \cap\left(\mathrm{E}_{0}\right)^{\perp} \sim\left(\mathrm{e}_{1}\right)$ and transform $\mathbb{C}^{\mathbb{N}}$ by a unitary transformation Φ_{1} that is non-trivial on ($\mathrm{e}_{1}, \mathrm{e}_{0}$) and is identical on its orthogonal complement that is $\left(e_{2}, \ldots, e_{m}\right)$.
Φ_{1} moves $\left(e_{1}\right)$ to $\mathcal{N}_{1}=:\left(e_{1}^{\prime}\right)$ and e_{0} moves to some $\left(e_{0}^{1}\right)$ that is orthogonal to (e_{1}^{\prime}).
So $\Phi_{1} \in \operatorname{SU}(\mathrm{~N})$ moves (e_{1}) "inside" $\left(\mathrm{e}_{1}, \mathrm{e}_{0}\right)$ into the given subspace of $\left(\mathrm{E}_{0}\right)^{\perp}$. This subspace is \mathcal{N}_{1}.

Step 2.

Let us repeat the same action with (e_{2}) and (e_{0}^{1}). Φ_{2} is identical on ($\mathrm{e}_{1}^{\prime}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{\mathrm{m}}$) and transforms whole $\left(\mathrm{e}_{2}, \mathrm{e}_{0}^{1}\right)$ to itself.
We denote $\left(\mathrm{e}_{2}, \mathrm{e}_{0}^{1}\right) \cap\left(\mathrm{E}_{0}\right)^{\perp}=: \mathcal{N}_{2}$, and set Φ_{2} a unitary transformation that moves $\left(\mathrm{e}_{2}\right)$ to $\mathcal{N}_{2} \subset\left(\mathrm{E}_{0}\right)^{\perp}$

$$
\Phi_{2}:\left(\mathrm{e}_{2}\right) \rightarrow \mathcal{N}_{2}=:\left(\mathrm{e}_{2}^{\prime}\right),\left(\mathrm{e}_{0}^{1}\right) \rightarrow\left(\mathrm{e}_{0}^{2}\right)
$$

Iterations.

We continue in the same way.
Φ_{k} is identical on ($\left.\mathrm{e}_{1}^{\prime}, \ldots, \mathrm{e}_{\mathrm{k}-1}^{\prime}, \mathrm{e}_{\mathrm{k}+1}, \ldots, \mathrm{e}_{\mathrm{m}}\right)$ and transforms whole $\left(\mathrm{e}_{\mathrm{k}}, \mathrm{e}_{0}^{\mathrm{k}-1}\right)$ to itself.
We denote $\left(\mathrm{e}_{\mathrm{k}}, \mathrm{e}_{0}^{\mathrm{k}-1}\right) \cap\left(\mathrm{E}_{0}\right)^{\perp}=: \mathcal{N}_{\mathrm{k}}$, and set Φ_{k} a unitary transformation that moves $\left(\mathrm{e}_{\mathrm{k}}\right)$ to $\mathcal{N}_{\mathrm{k}} \subset\left(\mathrm{E}_{0}\right)^{\perp}$

$$
\Phi_{\mathrm{k}}:\left(\mathrm{e}_{\mathrm{k}}\right) \rightarrow \mathcal{N}_{\mathrm{k}}=:\left(\mathrm{e}_{\mathrm{k}}^{\prime}\right),\left(\mathrm{e}_{0}^{\mathrm{k}-1}\right) \rightarrow\left(\mathrm{e}_{0}^{\mathrm{k}}\right)
$$

Last step of the set.

After these m steps we get the same problem with the smaller dimension $\mathrm{N} \rightarrow \mathrm{N}-\mathrm{n}_{0}, \mathrm{~m} \rightarrow \mathrm{~m}-1$.
On the step number m we define Φ_{m} that is identical on $\left(\mathrm{e}_{1}^{\prime}, \ldots, \mathrm{e}_{\mathrm{m}-1}^{\prime}\right) \supset\left(\mathrm{E}_{0}\right)^{\perp}$ and transforms whole $\left(\mathrm{e}_{\mathrm{m}}, \mathrm{e}_{0}^{\mathrm{m}-1}\right)$ to itself.
We denote $\left(\mathrm{e}_{\mathrm{m}}, \mathrm{e}_{0}^{\mathrm{m}-1}\right) \cap\left(\mathrm{E}_{0}\right)^{\perp}=: \mathcal{N}_{\mathrm{m}}$, and set Φ_{m} a unitary transformation that moves $\left(\mathrm{e}_{\mathrm{m}}\right)$ to $\mathcal{N}_{\mathrm{m}} \subset\left(\mathrm{E}_{0}\right)^{\perp}$

$$
\Phi_{\mathrm{m}}:\left(\mathrm{e}_{\mathrm{m}}\right) \rightarrow \mathcal{N}_{\mathrm{m}}=:\left(\mathrm{e}_{\mathrm{m}}^{\prime}\right),\left(\mathrm{e}_{0}^{\mathrm{m}-1}\right) \rightarrow\left(\mathrm{e}_{0}^{\mathrm{m}}\right)
$$

We see that all m mutually orthogonal subspaces split $\left(\mathrm{E}_{0}\right)^{\perp}$ on the direct sum, consequently $\left(\mathrm{e}_{0}^{\mathrm{m}}\right)=\left(\mathrm{E}_{0}\right)$.

Reduction of the dimension $\mathrm{N} \rightarrow \mathrm{N}-\mathrm{n}_{0}$,

$\mathrm{m} \rightarrow \mathrm{m}$ - 1 .

$$
\mathbb{C}^{N-n_{0}} \sim\left(e_{1}^{\prime}\right) \oplus\left(e_{2}^{\prime}\right) \oplus \cdots \oplus\left(e_{m-1}^{\prime}\right) \oplus\left(e_{m}^{\prime}\right),
$$

that we will transform, step-by-step, to "the fixed" splitting of the same space

$$
\left(\mathrm{E}_{1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{E}_{2}\right) \stackrel{\perp}{\oplus} \cdots \stackrel{\perp}{\oplus}\left(\mathrm{E}_{\mathrm{m}-1}\right) \stackrel{\perp}{\oplus}\left(\mathrm{E}_{\mathrm{m}}\right) .
$$

The next set of $m-1$ steps unitary moves all subspaces $\left(e_{2}^{\prime}\right), \ldots,\left(e_{m}^{\prime}\right)$ to the fixed subspace $\left(\mathrm{E}_{1}\right)^{\perp}=\left(\mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{m}}\right)$ and, consequently, (e_{1}^{\prime}) to (E_{1}).
By acting in this way we will get the space ($\mathrm{E}_{\mathrm{m}-1} \mathrm{E}_{\mathrm{m}}$) split on two orthogonal subspaces $\left(e_{m-1}^{(m)}\right)$ and $\left(e_{m}^{(m)}\right)$ isomorphic to ($\mathrm{E}_{\mathrm{m}-1}$) and (E_{m}) correspondingly. We transform them to $\left(\mathrm{E}_{\mathrm{m}-1}\right)$ and $\left(\mathrm{E}_{\mathrm{m}}\right)$ by unitaty transformation.

Summary.

The space of Hermitian matrices \mathcal{H} is parametrized by the eigen-numbers of the corresponding eigen-spaces and points of Grassmanians:

$$
\begin{array}{r}
\mathrm{G}\left(\mathrm{n}_{1}, \mathrm{n}_{1}+\mathrm{n}_{0}\right), \mathrm{G}\left(\mathrm{n}_{2}, \mathrm{n}_{2}+\mathrm{n}_{0}\right), \ldots, \mathrm{G}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}+\mathrm{n}_{0}\right) \\
\mathrm{G}\left(\mathrm{n}_{2}, \mathrm{n}_{2}+\mathrm{n}_{1}\right), \ldots, \mathrm{G}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}+\mathrm{n}_{1}\right) \\
\\
\\
\mathrm{G}\left(\mathrm{n}_{\mathrm{m}}, \mathrm{n}_{\mathrm{m}}+\mathrm{n}_{\mathrm{m}-1}\right) \\
0
\end{array} \quad \lambda_{\mathrm{m}-1} .
$$

Example: $\mathrm{n}_{\mathrm{k}}=1 \forall \mathrm{k}$.

The manifold of subspaces on \mathbb{C}^{2} is the Riemann sphere $\mathrm{PC}^{2}=\mathbb{C} P^{1} \ni(\mathrm{z}: 1)$, or Bloch sphere: $\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta, \theta \in[0, \pi], \phi \in[0,2 \pi]$ in the spherical coordinates.
The connection is $(\mathrm{z}: 1)=\left(\mathrm{e}^{\mathrm{i} \phi} \sin \theta / 2: \cos \theta / 2\right)$. The Cartesian coordinates of the point on the sphere $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ corresponding to $\mathrm{z}=\mathrm{x}+$ iy are given by the stereographic projection

$$
P_{1}=\frac{2 x}{1+x^{2}+y^{2}}, P_{2}=\frac{2 y}{1+x^{2}+y^{2}}, P_{3}=\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}} .
$$

We get $\mathrm{N}(\mathrm{N}-1) / 2$ complex numbers and N real numbers that are the eigenvalues, that is N^{2} real parameters. It is the dimension of $\mathrm{U}(\mathrm{N})$.

Torus action.

There is a natural action of the torus T^{N} on the Grassmanian $G(n, N)$:

$$
\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right) \rightarrow\left(\mathrm{t}_{1} \mathrm{x}_{1}, \mathrm{t}_{2} \mathrm{x}_{2}, \ldots, \mathrm{t}_{\mathrm{n}} \mathrm{x}_{\mathrm{N}}\right)
$$

where $\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in\left(e_{1}, \ldots, e_{N}\right) \in G(n, N)$,
$\left(\mathrm{t}_{1} \mathrm{x}_{1}, \mathrm{t}_{2} \mathrm{x}_{2}, \ldots, \mathrm{t}_{\mathrm{n}} \mathrm{x}_{\mathrm{N}}\right) \in \mathrm{T}^{\mathrm{N}}$.
There are two versions of the torus action, namely $\left|t_{k}\right|=1$ - we call it "a real torus", and $t_{k} \in \mathbb{C}^{*}$, that is "a complex torus".
Complex torus action, evidently, has thee orbits on $\mathbb{C P}^{1}$. The factorization moves $\mathbb{C P}^{1}$ to the discreet set of three points, say $(0: 1),(1: 0),(1: 1)$.
Real torus action gives some realization of the presented complex theory. In the case of one-dimensional subspaces $\left(\mathrm{e}_{\mathrm{k}}\right)$ the Bloch spheres become the unit circles parametrized by the real angle ϕ and $\mathrm{U}(\mathrm{N})$ becomes $\mathrm{O}(\mathrm{N})$.

The End.

Thank You!:)

