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Super-task.

The initial problem is a construction of
�good-comfortable� coordinates on the space of
Hermitian matrices H.

This space has a natural strati�cation in accordance with
the conjugated classes

H =
⊔
J

OJ , where OJ :=
⋃

g∈SU(N)

g−1Jg.

Here J runs all di�erent diagonal matrices with the ordered
diagonal values λ1 5 λ2 5 · · · 5 λN.
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Subject of the talk.

I introduce the parametrization of a �xed orbit. It is a
parametrization of the all splittings of CN on the sum of
mutually orthogonal subspaces of the �xed dimensions:

CN = (e0)
⊥
⊕ (e1)

⊥
⊕ (e2)

⊥
⊕ · · ·

⊥
⊕ (em−1)

⊥
⊕ (em),

where dim (ek) = nk,
∑

k nk = N.

In the simplest case when N = 3, nk = 1 and everything is
real, it is the parameterization of SO(3) ⊂ SU(3) (locally).
The problem solved by L. Euler.
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Euler angles.

A problem solved by Euler is the parametrization of the
mutual positions of two orthonormal bases in R3. He
introduced three subsequent rotations around the axes and
three angles of the rotations, see Fig. 1.

Figure: Euler angles α, β, γ.

It was L. Euler who introduced a principal concept that is
�the line of nodes� N .
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Notations.

Let {x, y, z} and {X,Y,Z} be the initial and the �nite
positions of the orthogonal semi-axes. The intermediate
positions we denote by the primes, like {x′′, y′′, z′′}. letters
in brackets like (x, y) are enveloping subspaces (planes).
Let ρκ(φ) be a rotation around the axis κ,
κ ∈ {x, y, z, x′, y′, . . . } on the angle φ.
The subsequent rotations on Euler angles that coincide
{x, y, z} and {X,Y,Z} are:

{x, y, z} ρz(α)→ {x′, y′, z} ρx′ (β)→ {x′′ = x′, y′′,Z} ρZ(γ)→ {X,Y,Z}.

The axes of the rotations are z,Z and the line of nodes
N = x′ = x′′:

N := (x, y) ∩ (X,Y)

that is an intersection of the initial and the �nite positions
of XY-coordinate planes.
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Generalization. First attempt (unsuccessful).

Let us change the one-dimensional subspaces (axes) x, y, z
by the multidimensional subspaces (e1), (e2), (e3), and the
rotation

ρz(φ) =

 cosφ − sinφ 0
sinφ cosφ 0
0 0 1


around the axis by some unitary transformation that is
identical on E3 and �rotates� (turns, maps, sends)
subspaces (e1) to (E1) and (e2) to (E2).

(e1)⊕ (e2) = (E1)⊕ (E2) ∼ Cn1+n2

The disadvantage:
There is no subspace among ek which dimension is equal to
the dimension of (e1, e2) ∩ (E1,E2) that is the analog of the
line of nodes N .
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Tait�Bryan angles.

There is (classical) modi�cation of the Euler's method
named after P. G. Tait and G. H. Bryan. The main
di�erence is another line of nodes NTB := (x, y) ∩ (Y,Z):

Figure: Tait-Bryan angles φ, θ, ψ.

{x, y, z} ρz(ψ)→ {x′, y′, z}
ρy′ (θ)→ {X, y′, z′} ρX(φ)→ {X,Y,Z}.
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Dimension of NTB.

The subspaces NTB and (Y) have the same dimension:
dim NTB =

dim (x, y)+dim (Y,Z)−N = (nx+ny)+(ny+nz)−(nx+ny+nz)

= ny, and can be coincided by an element of the orthogonal
group of the space (z)⊥.
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Generalization of the set of rotations of plane.

The position of the ordered pair of the orthogonal lines on
a plane can be parametrized by the angle between two
corresponding lines that is a point of PR2.

All the splittings of Cn1+n2 on two orthogonal subspaces

(e1)
⊥
⊕ (e2), dim (e1) = n1, dim (e2) = n2 can be naturally

identi�ed with the points of the Grassmanian
G(n1, n1 + n2) ' G(n2, n1 + n2).
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Multidimensional version of Tait�Bryan

rotations.

Let the space CN be split on m + 1 mutually orthogonal
subspaces:

CN = (e0)
⊥
⊕ (e1)

⊥
⊕ (e2)

⊥
⊕ · · ·

⊥
⊕ (em−1)

⊥
⊕ (em),

that we will transform, step-by-step, to �the �xed� splitting

CN = (E0)
⊥
⊕ (E1)

⊥
⊕ (E2)

⊥
⊕ · · ·

⊥
⊕ (Em−1)

⊥
⊕ (Em)

with the same dimensions of the corresponding subspaces.
The �rst set of m steps Φ1,. . . , Φm (unitary) moves all
subspaces (e1), . . . , (em) to the �xed subspace (E1, . . . ,Em)
and, consequently, (e0) to (E0).
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Step 1.

Let us denote N1 := (e0, e1) ∩ (E0)⊥ ∼ (e1) and transform
CN by a unitary transformation Φ1 that is non-trivial on
(e1, e0) and is identical on its orthogonal complement that
is (e2, . . . , em).

Φ1 moves (e1) to N1 =: (e′1) and e0 moves to some (e10) that
is orthogonal to (e′1).
So Φ1 ∈ SU(N) moves (e1) �inside� (e1, e0) into the given
subspace of (E0)⊥. This subspace is N1.
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Step 2.

Let us repeat the same action with (e2) and (e10).
Φ2 is identical on (e′1, e3, . . . , em) and transforms whole
(e2, e

1
0) to itself.

We denote (e2, e
1
0) ∩ (E0)⊥ =: N2, and set Φ2 a unitary

transformation that moves (e2) to N2 ⊂ (E0)⊥

Φ2 : (e2)→ N2 =: (e′2), (e10)→ (e20).
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Iterations.

We continue in the same way.
Φk is identical on (e′1, . . . , e

′
k−1, ek+1, . . . , em) and transforms

whole (ek, e
k−1
0 ) to itself.

We denote (ek, e
k−1
0 ) ∩ (E0)⊥ =: Nk, and set Φk a unitary

transformation that moves (ek) to Nk ⊂ (E0)⊥

Φk : (ek)→ Nk =: (e′k), (ek−10 )→ (ek0).
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Last step of the set.

After these m steps we get the same problem with the
smaller dimension N→ N− n0, m→ m− 1.
On the step number m we de�ne Φm that is identical on
(e′1, . . . , e

′
m−1) ⊃ (E0)⊥ and transforms whole (em, e

m−1
0 ) to

itself.
We denote (em, e

m−1
0 ) ∩ (E0)⊥ =: Nm, and set Φm a unitary

transformation that moves (em) to Nm ⊂ (E0)⊥

Φm : (em)→ Nm =: (e′m), (em−10 )→ (em0 ).

We see that all m mutually orthogonal subspaces split
(E0)⊥ on the direct sum, consequently (em0 ) = (E0).
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Reduction of the dimension N→ N− n0,

m→ m− 1.

CN−n0 ∼ (e′1)
⊥
⊕ (e′2)

⊥
⊕ · · ·

⊥
⊕ (e′m−1)

⊥
⊕ (e′m),

that we will transform, step-by-step, to �the �xed� splitting
of the same space

(E1)
⊥
⊕ (E2)

⊥
⊕ · · ·

⊥
⊕ (Em−1)

⊥
⊕ (Em).

The next set of m− 1 steps unitary moves all subspaces
(e′2), . . . , (e′m) to the �xed subspace (E1)⊥ = (E2, . . . ,Em)
and, consequently, (e′1) to (E1).
By acting in this way we will get the space (Em−1Em) split

on two orthogonal subspaces (e
(m)
m−1) and (e

(m)
m ) isomorphic

to (Em−1) and (Em) correspondingly. We transform them to
(Em−1) and (Em) by unitaty transformation.
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Summary.

The space of Hermitian matrices H is parametrized by the
eigen-numbers of the corresponding eigen-spaces and points
of Grassmanians:

G(n1, n1 + n0),G(n2, n2 + n0), . . . ,G(nm, nm + n0) λ0
G(n2, n2 + n1), . . . ,G(nm, nm + n1) λ1

...
...

G(nm, nm + nm−1) λm−1
0 λm
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Example: nk = 1 ∀k.

The manifold of subspaces on C2 is the Riemann sphere
PC2 = CP1 3 (z : 1), or Bloch sphere:
sin θ cosφ, sin θ sinφ, cos θ, θ ∈ [0, π], φ ∈ [0, 2π] in the
spherical coordinates.
The connection is (z : 1) = (eiφ sin θ/2 : cos θ/2). The
Cartesian coordinates of the point on the sphere P1,P2,P3

corresponding to z = x + iy are given by the stereographic
projection

P1 =
2x

1 + x2 + y2
,P2 =

2y

1 + x2 + y2
,P3 =

1− x2 − y2

1 + x2 + y2
.

We get N(N− 1)/2 complex numbers and N real numbers
that are the eigenvalues, that is N2 real parameters. It is
the dimension of U(N).
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Torus action.

There is a natural action of the torus TN on the
Grassmanian G(n,N):

(x1, x2, . . . , xN)→ (t1x1, t2x2, . . . , tnxN),

where (x1, x2, . . . , xN) ∈ (e1, . . . , eN) ∈ G(n,N),
(t1x1, t2x2, . . . , tnxN) ∈ TN.
There are two versions of the torus action, namely |tk| = 1
� we call it �a real torus�, and tk ∈ C∗, that is �a complex
torus�.
Complex torus action, evidently, has thee orbits on CP1.
The factorization moves CP1 to the discreet set of three
points, say (0 : 1), (1 : 0), (1 : 1).
Real torus action gives some realization of the presented
complex theory. In the case of one-dimensional subspaces
(ek) the Bloch spheres become the unit circles parametrized
by the real angle φ and U(N) becomes O(N).
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The End.

Thank You!:)

PCA 2024


