On multidimensional analogs of Euler (Tait-Bryan) angles and Grassmanians.

M. V. Babich, L. A. Bordag, A. Khvedelidze and D. Mladenov

Abstract

The position of a frame in \mathbb{R}^{3} can be parametrized by the famous Euler angles: precession represents a rotation around the z axis, nutation represents a rotation around the \mathcal{N} or x^{\prime} axis, and intrinsic rotation represents a rotation around the Z or $z^{\prime \prime}$ axis.

Another angles were introduced in last of XIX by P. G. Tait and G. H. Bryan. The angles are called yaw, pitch, and roll and are used in the aerospace technique now. Yaw axis z is a vertical axis, pitch axis y is a horizontal axis running from left to right parallel to the wings of a winged aircraft, and roll axis is a longitudinal axis x, an axis drawn from tail to nose.

I will demonstrate that it is the Tait-Bryan parametrization that can be generalized on the case of the spliting of a space \mathbb{R}^{N} or \mathbb{C}^{N} on the orthogonal subspaces of arbitrary dimensions.

M. V. Babich

POMI RAN
St.Petersburg, Russia
e-mail: mbabich@pdmi.ras.ru
L. A. Bordag

LIT, Dubna
A. Khvedelidze

LIT, Dubna
D. Mladenov

LIT, Dubna

