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t a fixed point

Consider the (rotational) motion of a rigid body about a fixed point O. Denote by w and m the
pseudovectors of its angular velocity and the angular momentum, respectively.

The pseudovectors w and m might be expressed in a (rotating) coordinate system which directing unit
vectors i, j, k are aligned along the principal axes of inertia, passing through the point 0,! that is,

w=pi+qj+rk, m=Api+Bqj+ Crk, (1)
where A, B and C are the principal moments of inertia, corresponding to the principal directions i, j and
k, respectively.

The expression for the angular momentum, given in (1), is based on the identities
m= /r>< w X rdp:s/rzwf(u<r)rdp:Jw, J=0p), Iy = /5:’"r2 — rmradp,®

where ris the radius vector of an “infinitesimal” mass element dp,® the (raw and column) indices m and
n run over the values 1,2, 3 and 6,"" is the Kronecker symbol, that is, 6,’;, vanishes, unless it acquires the
unit value when m = n (on the diagonal of J). Thus, the matrix J, expressing the tensor of inertia of a
rigid body, with respect to an orthogonal basis, fixed in it, being real and symmetric,5 is unitarily
diagonalizable.

1The principal axes of inertia need not pass through the centre of mass, contrary to a false, yet
common belief notably shared, among others, by Richard Feynman.

2We note that a reversal in the ordering of moments of inertia (ascendingly or descendingly)
corresponds to swapping the chirality between a “right-handed” and a “left-handed” coordinate system.

Although the cross product is non associative we need not place brackets in this special
(associative) case.

We have tacitly assumed an orthogonal coordinate system.
We use the same letter (bolded and not) to (respectively) denote both a vector and its modulus.

Note, moreover, that J is positive definite.



Calculating the tensor of inertia via the Huygens-Steiner theorem

We point out that once the matrix / of the tensor of inertia of a
rigid body, about its centre of mass G, has been calculated, the
Huygens-Steiner theorem enables a swift calculation of the matrix J
of the tensor of inertia about any other point O, as

r22 —|—r32 —nrn —nn n
J=I14+| —nn K+ —nn /dp, r=|n|=0-G"
—nrn —rr3 r12 + r22 r3

Note that the principal axes of inertia about the point O do not (in
general) coincide with the principal axes of inertia about the centre
of mass G. However, if O lies on a principal axis through G then
the directions of the principal axes through O would coincide with
the directions of the principal axes through G.2

"The coordinates r1, r2 and r3 of the radius vector r are presummed to be
calculated in the same coordinate system, centred at G, in which /| was
caculated. Thus, the calculation of J merely requires the coordinates of O (in
the said coordinate system) and body’s (total) mass [dp.

8That is, the (unordered) set of directions of the principal axes is preserved
in this special case.



The notion of the Galois top

We consider a heavy top, in a uniform gravitational field, which fixed point O
lies at the Galois axis [2, 4, 12, 16, 17]. We shall call such a top the “Galois
top™.
If we impose a coordinate system which origin is the body's centre of mass G
and its axes are aligned along the principal axes of inertia (which share G as
their common point) then the coordinates of the point O would be expressed as

0o =d(a[§h-H 0= 3= ) ©

where d is the distance between G and O, whereas A, B and C are the
principal moments of inertia about the centre of mass G.

Replacing these principal moments (about the centre of mass G), appearing on
the right-hand side of (2) with the principal moments of inertia about the point
O would yield the coordinates of the centre of mass G with respect to a
coordinate system which origin is the (fixed) point O and its axes are aligned
along the principal axes of inertia about the point 0.°

®Although only the principal axis, corresponding to the intermediate
moment of inertia, about the centre of mass G, would transform to a colinear
principal axis about the point O, as further explained in [8].



The Euler equations for the Galois top

Denoting with n the unit vertical upwards (in the direction opposing the
direction of gravity), the exerted torque 7 (that is, the moment of external
forces) is calculated as the cross product of the radius vector d = d(g1,0, g3).
eminating from the fixed point O towards the centre of mass G, and the weight

of the top w (that is, the gravitational force):'°

T=wnxd.

Expressing n via the Euler angles as
n=sin¢sinfi+ cos¢sinfj+ coshk,

where i, j and k are the principal axes, corresponding to the principal moments
of inertia A, B and C (about the point O), respectively, we might,

accordingly,* write down the Euler equations as

Ap+(C—-B)qr = gz cos ¢psin0,
Bg+(A-C)rp = g1 cosf — gzsinpsinb,
Cr+(B—A)pg = —gi cos ¢sin b,

where p, g and r are the projections of the angular velocity w upon the
principal axes i, j and k, respectively.

10That gravitational force w is applied to the centre of mass. Its magnitude coincides with the
magnitude of the weight, as defined by the third General Conference on Weights and Measures, in 1901
[18, p. 46].

11Upon assuming that O # G (so that d # 0) and that the units of distance and force are so chosen
so that the product wd coincides with unity.



The Lagrange top as a special case of the Galois top

Permitting both ascending and descending ordering of the principal moments of inertia, the Lagrange
top arises if A= B. The corresponding Euler equations become

Bp+(C—B)rgq = cos ¢sin 6,
Bg+(B—-C)rp = —sin¢sin6,
Cr =0.

Thus, r is constant along with the two constants ¢ = B1)(sin 8)2 + Crcos 6 and h = B(v sin )%+

+B(6)2 4+ Cr? +2wd cos 6,'2 and so cos 0 is an elliptic function (of time) which satisfies the
differential equation:

C C
B(>'<)2:2wdx3+((1—E) Crz—h>x2+2<§—wd>x+h—Cr2—C—

With x viewed as a variable of the cubic polynomial on the right-hand side of the latter equation we
might express its (three) roots as xs = a1 /6 + v(4s), s € {0,1,2}, where

(a3 —6a2)/Bs + Bs

v(s) == P e— Bs == £TI/6 ai —9ajap +54a3 +/—27d, i :=+—1,
h+(C/B—1)Cr? (Crc ) 2/B+Cr2 —h
o = ———————————, ap =2 —-1), ag i = ——m,
wd wdB wd

and d := ag(a% —8a2) — 4a3(ai — 9ajgap + 27 a3) is the discriminant of the cubic polynomial
2x3 — a1x2 + azx — a3.

12 . . . . .
Although we have stipulated that the product wd is equal to one we still explicitly placed it on the
right-hand side of the latter equation in order to emphasize it as a unit of energy.



The Lagrange top as a special case of the Galois top I

So if we put wd
w
Xs(t) = kR ﬁ (t - TS)7

I i*m\/2B/(v/3wd)

M2 1 1), \A(-2s - 1)

2 _ 2/32 2 _ 2
k= V0 —x0)0e %) = VA1) = wal L kL N
where R(:,-) is the Galois essential elliptic function, as defined in [1, 3, 5, 6, 13], and
M(-,-) is the arithmetic-geometric mean (of its two variables), then xs(0) = xs and
each (elliptic) function xs(-) does, indeed, satisfy the differential equation for cos 6.
The index s might, in fact, be regarded as an integer modulo 3, so we have three
functions xs(-) which might be matched one with other via a corresponding
argument-shift. The argument-shift is real-valued only between the functions x1(-) and
x2(+). The real half-period Ty of these two functions separates their consecutive
extrema: a minimum for either function is a maximum for the other. Thus, for
real-valued time the range of either function x;(-) or x2(-) is contained in the (closed)
interval [x1, x2], whereas the function xo(-) is unbounded near odd multiples of Ty and
has xp as its (local) extremum at each even multiple of Tp.

The real half-period Ty is also shared with the (elliptic) functions:
2 h—Cr? —2wdxs

S B—-C)r ctCr
2 — - + :( + .
P +q B e B B(1Lx)




The Euler top and the Lagrange top as two special cases of the Galois top
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Analytical Solution to the Lagrange Top L (M. = Mseos6)

Ug = o n + Mglcos@ (1.7)
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42 = (1 —u?)(a — fu) — (b — au)? (1.13)
Abstract In view of (1.13), w” is a cubic polynomial in u as follows:
% = Au® — (a + a®)u? + (2ab — Bu + (o — b?) (1.14)

In this article, the exact periodic and bounded solutions for the

motions of Lagrange top with initial conditions are obtained, These Taking the derivative wr.t. ¢ and taking into account w 7
solutions are expressed in terms of the Weierstrass elliptic fanction. Helmholtz oscillator equation

0, we get the
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2 Analytical Solution
In this section we will solve the initial value problem
W% = Bud—(at+a)ul+ (2ab—B)u+(a—b%), uw(0) = ug and v/ (0) = g (2.18)

Let
u(t) = A+ Bp(t — to; 92, 93), (2.19)
where p(t) = p(t—to; g2, g3) is the Weierstrass elliptic function. This function
satisfies the nonlinear ode ¢'(£)? = 43(t) — gop(t) — g3. The numbers g, and
g3 are called the Weierstrass elliptic invariants.
Inserting equation (2.19) into (2.18), gives

—aA? — 2aAb+ b — B%g3 —a — A%a + AB — A%F —
B (2aA+ 2ab + Bgs + 2Aa — B+ 3A8) p(t) —
B¥a + o+ 3A8)p(t)2 — B2X(—4 + BB)p(t)® = 0.

Equating the coefficients of g7 (t) to zero, gives an algebraic system. Solving
it using the initial conditions, we obtain the following solutio :

A= ’”’&,B:%, 02 = 15 (a® + o + 20a — 6abf + 342) .

38
95 = 35 (—2a® — 20° — 60a® + 18008 — 60%a — a8 — 3605 + 180abf + 276262 .
bt mlata+3uf); i ((ata)+ 362 —6abp),

0TV O\ A (~2ata)®+ 18abBla+ @) — 9 (38 + a+ 4da) £2)

Finally, the solution to the top problem reads

o 1 t—to; & ((a+ a)? + 358% — 6abf) ,
8(8) = cos™! <7ﬁ (a+a — 1% ( = (—2(a+a)30+1i8abﬁ(a+a) — 9(—302 + a +4a) f7) )))
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The Euler top as a special case of the Galois top

The Euler top is the special case of the Galois top, corresponding to O = G, so that the torque T
vanishes. Guided by [2], we put

BC )
F(t,A,B,C):i= | ————iS(t,A,B, C),
(A—B)A-C)

S(t, A, B, C) := S(t, I(A, B, C), (A, C, B)), S(t,u,v) =Y s <fm <r+ ﬁ) , 5) :
i Wy v v

where S(-, -) is the Galois alternative elliptic function, as defined in [1, 3, 5, 6, 13], and

I(A, B, C) = 1/%_13

Note that permuting the principal moments A, B and C, as the (three) variables upon which the value
of —I(A, B, C) depends, would yield the six values S(T(B, C, A), A, B, C), S(T(C, A, B), A, B, C),
S(T(C, A, B), B, C,A), S(T(A, B, C), B, C, A), S(T(A, B, C), C, A, B) and S(T(B, C, A), C, A, B), where

™

T(A, B, C) :=

2M(I(A, B, C), I(A, C, B))

For fixed principal moments A, B and C, a root of S(-, A, B, C), and hence of (-, A, B, C) (when viewed
as a function of its first variable), would coincide with (the half-period) T(A, B, C), that is,

S(T(A, B, C),A,B,C) =0.

13 Observe that I(4, B, C)2 + I(B, C, A)? + I(C, A, B)? = 0.
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Observing that

S(t, p,v) = S(t, p, V) S(t,i(p + v), i(p — v)) = S(t, (/2 — v2,iv) S(t,\/v2 — p2,ip),

we might verify that the equalities

. BC . BC .
Af(t,A,B,C) = A | —————— i 8(t,A,B,C) = A —————— iS(t, B, C,A) S(t, C, A, B) =
(A= B)(A—C) (A= B)(A—C)

_(cfs)\/ C)B_A)\/(C ACE B S(t, B, C,A)S(t, C, A, B) =

= (B — C)f(t, B, C,A)f(t, C, A, B)

are preserved under cyclic permutations of the principal moments of inertia A, B and C. Thereby, these
(three) cyclic permutations would generate, via acting on f(t, A, B, C), the (three) coordinates p = w - i,
q=w -jand r = w - k of the angular velocity (in body's frame) of Euler top.

We now put

2iCA — +
T /(B,c,A),/(B,A,C)),T(r,u,u)::S(n“ voK ”),

g(t,B,C, A) :=

s

2i 2i

and observe that the four values +(g3Cf(t, C, A, B) £ g1Af(t, A, B, C)) would coincide with the four
values g(t, B, C, A), g(t+2T(C, A, B), B, C, A), g(t+2T(A, B, C),B,C,A) g(t+2T(B, C, A), B, C, A).



The Galois top invariant of motion

Aside from the well-known “classical” invariants of motion,'* the Galois
top possesses its “own” invariant. Too often the trivial “geometrical”
constraint, that is, the condition that the modulus of n is equal to one, is
added (as a third invariant) to the "vertical” projection of the angular
momentum ¢ := m- n and (twice) the energy h:=w-m +2wd-n
(which are constants).

The “fourth” invariant of the Galois top is

— Blla(t)dt _g&aB(C—A)  [(A-B)(B-C)
g :=¢elo g(t,B,C,A), B: A CA ;
where g(t, B, C,A) := gz Cr(t) + g1 Ap(t) is the projection of the
angular momentum upon the Galois axis.*®

We might, in particular, recall the case of the Euler top for which we do,

indeed, have
Baq(t)g(t,B,C,A)+£(t,B,C,A) =

— (5 (B_CC)?B_A) i+ 1) S(t,B, C,A)g(t,B,C,A) =0.

™ An archaic term “first integral” is still much in use instead of the term “invariant”.
Thus, g(t, B, C, A), along with the invariant g = g(0, B, C, A), is either
identically zero or never zero!



The Euler top and the Lagrange top as two special cases of the Galois top

Instead of a conclusion: on citing, reciting and more reciting

V. V. Kozilov

NON-EXISTENCE OF AN ADDITIONAL ANALYTIC INTEGRAL IN THE PROBLEM
OF THE MOTION OF AN UNSYMMETRICAL HEAVY SOLID ABOUT
A FIXED POINT

If the ellipsoid of inerlia is nol an ellipsoid of revolulion, the cquations of motion
of a solid are not integrable by Liouville quadratures. This result considerably streng-
thens the Poincaré—Husson {heorem coucerning the zbsence of an algebraic integral,

B.B. mobur muruposars A. llyankape: «Her 3anaq pemenHblx u He pelieHHbIX. A ecth
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KOHYHM HAII O4€PK H NPEJIOCTABHM BO3MOMKHOCTE THTATE0 MO3HAKOMHTECSH € OPHIHHAILHBIMH
paboramu camoro Banepns Bacunnesnua.

A. B. Bopucos, C. B. Boaomun, A. A. Kuaun,
H. C. Manmaes, /. B. Tpewes
Husapn, 2010
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