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Introduction

An original package for investigating numerical solutions of
ordinary differential equations, which is built in the Sage
computer algebra system is being developed in RUDN.
This project is focused on a closer integration of numerical and
symbolic methods while primarily aiming to create a
convenient tool for working with numerical solutions in Sage.
Based on the completely integrable Calogero dynamical
system, a tool for testing difference schemes will be presented
in the talk.
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Geometric integrators in CAS

Our goal
is to create a convenient tool for the numerical and analytical study
of difference schemes that is well integrated with algebraic tools.

Tools required to design and investigate the algebraic
properties of geometric integrators are presently available in
CAS.
CAS provide a rather poor toolset for working with
approximate solutions, because this question is traditionally
related to numerical methods.

Example
sage: var(’x, y, t’)
sage: desolve_system_rk4([x*(1-y),-y*(1-x)], [x,y],
ics=[0,0.5,2], ivar=t, end_points=20)
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FDM for Sage

We present an original fdm package built in the Sage computer
algebra system.
Our general principles:

The implementations of the methods do not depend on the
field (R,C,Q,Fp) and especially on the number of bits
allocated to a number.
The actions that can be performed analytically are performed
analytically. The initial problems are regarded as elements of
the new class, which enables symbolic computations.
The numerical solutions are regarded as elements of the new
class, which enables interpolation and visualization.

Ref.: https://github.com/malykhmd/fdm
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Classes in FDM

Standard approach does not provide clear separation between a
well-posed mathematical problem and a method for its solution.
In package FDM for Sage, there are two classes:

initial problem,
numerical solve.

Any method of integration is map from one to other.
Implemented numerical methods:

explicit Runge-Kutta methods up to 14 order (Butcher’s
tables, calculated in Maple by Peter Stone, were implemented
in FDM be Pavlyuchenkov).
symplectic Runge-Kutta methods.
Methods using Cremona transformations (Kahan method).

Tools for analyze of numerical don’t depend on methods of
integration and thus described in class NumSol.
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Initial problems class

Description of the initial problem

ẋ1 = x2, ẋ2 = −x1, x1(0) = 0, x2(0) = 1

on the segment 0 < t < 10:

sage: var("x1,x2,t")
sage: pr=Initial_problem([x1,x2],[x2,-x1],[0,1],10)

An example of methods of initial problem class:

sage: pr.latex()
\left \{ \begin{aligned}
& \frac{d}{dt} x_{1} = x_{2} ,
\quad \frac{d}{dt} x_{2} = -x_{1} , \\ &
x_{1} (0)= 0 , \quad x_{2} (0)= 1
\end{aligned} \right.
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Numsols class

Explicit Runge-Kutta method with N points:

sage: sol=erk(pr, N=20)

Examples of Numsols class methods:

sage: sol.value(x1,pi)
0.00142448822043750
sage: sol.zeros(x1)
[3.1430180411731743, 6.286036263964258, 9.429057230259955]
sage: sol.plot(x1,x2)
graphic object
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Many-body problems suitable for testing

In order to test numerical methods for integral dynamic systems in
FDM for Sage, a suitable dynamic system needs to be found.
Among many Hamiltonian systems, the selected system named
Calogero has the following three advantages:

The many-body problem has theoretical solutions for any
number of particles.
The many-body problem is completely integrable, i.e. a
number of algebraic integrals of motion is equal to the number
of particles.
The theoretical solution of the many-body problem contains
singularities (collision points).

Ref.: J. Moser, Integrable Hamiltonian systems and spectral theory.
Edizioni della Normale, 1983.

8 / 38



FDM for Sage Calogero system Calogero system in Sage Integrals Singularity in Cauchy problem Kahan method Conclusion

Calogero system

Calogero system is a one-dimensional system of many particles of
the same mass. Let particles be numbered starting from 0 and qi
be the position of i-th particle, then

q̈i = −∂U

∂qi
, i = 0, · · · , n− 1,

where

U =
∑
i<j

V (qi − qj), V (x) =
b

x2
, −1 ≤ b ≤ 1

where b is potential constant. When b is positive, particles repel
each other, otherwise they attract each other.
The Hamiltonian of this system is:

H =
1

2

n−1∑
i=0

p2i + U
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Lax pair

The theoretical solution and integral of motions of the Calogero
system is described with the help of Lax pairs. A Lax pair is a pair
of time-related matrices or operators that satisfy the following
relationship:

dL̂

dt
= ÂL̂− L̂Â.

In the Calogero system there are the following Lax pairs:

L̂ = diag(p0, p1, . . . , pn−1) +
√
−b

(
1− δjk
qj − qk

)
and

Â =
√
−b diag(d0, d1, . . . , dn−1)−

√
−b

(
1− δjk

(qj − qk)2

)
,

where dk =
∑n−1

j=0
1−δjk

(qj−qk)2
.
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Spectrum of the matrix L̂

Theorem

In Calogero system, the spectrum of the matrix L̂ doesn’t depend
on t.

Cauchy problem
d

dt
Û = ÂÛ , Û(0) = E,

has a solution Û , which is an orthogonal matrix. From the eq.

dL̂

dt
= ÂL̂− L̂Â

follows that
d

dt
(Û−1L̂Û) = 0,

and therefore
Û−1L̂Û = L̂|t=0.
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Integrals of motion in the Calogero system

Theorem
In Calogero system of n particles, there are n integrals of motion

Fk = Sp L̂k,

where k = 0, 1, . . . , n− 1.

From the eq.
dL̂

dt
= ÂL̂− L̂Â

follows that the spectrum of the matrix L̂ doesn’t depend on t.
Thus the sum of eigenvalues of matrix L̂ is independent of time,
that is, there are n integrals of motion

Sp L̂k = λk
1 + · · ·+ λk

n,

where λ1, . . . are eigenvalues of L̂.
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Theoretical solution of Calogero system

Theorem
The theoretical solution q0, q1, . . . , qn−1 of the Calogero system is
the eigenvalues of the following matrix

M̂ = Q̂|t=0 + tL̂|t=0.

Let
Q̂ = diag(q0, q1, . . . , qn−1),

then
d

dt
Û∗Q̂Û = Û∗L̂Û = L̂|t=0.

So there is:
Û∗Q̂Û = Q̂|t=0 + L̂|t=0 · t.
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Algebrodynamics

The positions of n bodies are the roots of a polynomial

F (q, t) = det(M̂ − qÊ),

coefficients of which are rational functions of t and the initial
position of the system. Thus:

any symmetric function of q1, . . . qn is rational with respect of
t, but qi itself has movable branch points,
we can analytically calculate the positions on bodies at any
time, but we can’t understand which from they is for 1st body,
analytical continuation of q1(t) give us q2, . . . , qn, i.e. there
are no n bodies, but there are n exemplars of one body at
sheets of Riemann surface.

Ref.: Kassandrov et al.// Gravit. Cosmol. 29, 50–56 (2023).
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Moment of collision in Calogero system

Because the Cauchy problem is transformed into an algebraic
problem, the collision moment can be easily obtained. The collision
point is the solution to the following system of equations:

F = 0,
∂F

∂q
= 0.

Compared with the collision position, the collision moment is easier
to obtain. The collision moment can be obtained by solving the
Gröbner basis of these polynomials only with respect to time.
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Сounterexample to Golubev conjecture

Golubev conjecture, 1953
If the dynamical system has unambiguous first integrals then it can
be integrated in meromorphic functions.

Calogero system has n rational first integrals

Fk = Sp L̂k

in involution, but qi are algebraic multiple-valued functions of t.
Furthermore, symmetric functions of q0, . . . , qn−1 are rational
functions of t, and thus Calogero system has Painlevé property only
after the change of variables:

sk =

n−1∑
j=0

qkj , k = 1, . . . , n.
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Implementation of Calogero system in Sage

In Sage the following tools have been added to FDM for Sage:
Function calogero_problem is uesd to specify the Calogero
system in Sage.
Function calogero_q returns the positions of particles at a
fixed time t in Calogero system.
Function calogero_curve returns the equation F used to
plot the motion of the particles in Calogero system.
Function calogero_solution_crash returns the moment of
collision in Calogero system.
Function calogero_integral returns the integral of motion
in Calogero system.
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Specifying Calogero system in Sage

The function calogero_problem has four optional parameters:
— ics is the list of initial values, with the positions of the bodies
coming first, and then their momenta,
— n is the number of bodies,
— T is the final time; we always take t = 0 for the initial time,
— b is the value of parameter b, default b = -1.
For example, define a five-body problem in which the initial
positions of the particles as follows: qi(0) = i, i = 0, . . . , n− 1.
Let the initial momentum be close to zero, the final time T = 0.5
and the potential constant b = −1. Then this problem can be
specified as follows:

sage: n=5
sage: ics=list(range(n))+[0.1,0.2,-0.1,0,0]
sage: problem_calogero=calogero_problem(ics,n=n,T=0.5,
b=-1)
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Specifying the Calogero system in Sage

This problem can be
solved numerically using
the tools in FDM. It is
solved using the 4th order
explicit Runge-Kutta
method with one hundred
steps as follows:

sage: sol=erk(problem_ca
logero,N=100)

The figure on the right
shows the trajectory of the
first particle
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Computation of theoretical solution

To compare exact and numerical solutions the function calogero_q
was added to FDM to calculate the positions of particles at a fixed
time. This function has four optional parameters:
— ics is the list of initial values, with the positions of the bodies
coming first, and then their momenta,
— n is the number of bodies,
— t is the fixed time, defaul t = 1,
— b is the value of parameter b, default b = -1.
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Computation of theoretical solution

For example, use this function to compare the theoretical solution
and the numerical solution of the fourth-order Runge-Kutta method
in the previous five-body problem. The positions of the particles at
time t=0.1 are shown in the left part below. The numerical
solution obtained is shown in the right part below.

Theoretical solution
sage: calogero_q(ics,n,b=
-1,t=0.1)
[0.02174568377617522?,
1.022008478256518?,
1.989567507785786?,
2.998508164438269?,
3.988170165743252?]

Numerical solution
sage: Q=[SR(’q’+str(i))
for i in range (n)]
sage: [sol.value(q,0.1)
for q in Q]
[0.0217456837809339,
1.02200847823443,
1.98956750781722,
2.99850816441585,
3.98817016575156]
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Calculation of F

Function calogero_curve is added in FDM to return the
polynomial

F (q, t) = det(M̂ − qÊ).

This function has three optional parameters:
— ics is the list of initial values, with the positions of the bodies
coming first, and then their momenta,
— n is the number of bodies,
— b is the value of parameter b, default b = -1.
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Draw particle trajectory diagrams in Sage

For example, the polynomial F of the previous five-body problem is
obtained as follows:
sage: calogero_curve(ics,n,b=-1)
-qˆ5 + 1/5*qˆ4*t - 18089/3600*qˆ3*tˆ2
+ 23053/36000*qˆ2*tˆ3 - 526651/129600*q*tˆ4
+ 104483/1296000*tˆ5 + 10*qˆ4 - 2*qˆ3*t
+ 18101/600*qˆ2*tˆ2 - 5347/2000*q*tˆ3
+ 266021/32400*tˆ4 - 35*qˆ3 + 34/5*qˆ2*t
- 196199/3600*q*tˆ2 + 6829/4000*tˆ3 + 50*qˆ2
- 43/5*q*t + 51523/1800*tˆ2 - 24*q + 12/5*t
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Drawing of trajectories of bodies

In Sage the function implicit_plot is used to draw the curve,
defining be equation with two variables.
For example, the trajectory diagram of the previous five-body
problem can be drawn as follows:

sage: implicit_plot(calogero_curve(ics,n),(t,0,1),(q,0,4),
color=’red’, linestyle=’--’, axes_labels=[’$t$’,’$p$’], as
pect_ratio=1/5)
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Comparison of exact and approximate trajectories

The figure below shows the exact trajectories (dashed line) and
numerical solution (solid line) of the previous five-body problem.
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Of course, calculations according to the scheme of Runge-Kutta
break after the collision of bodies.
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Calculating the moment of collision

The function
calogero_solution_crash has
two optional parameters: ics and
n.
For example, the moment of
collision of the previous five-body
problem is calculated as follows:

sage: calogero_solution_
crash(ics,n)
0.618840603733536?

In the right picture the blue line
is the numerical solution, and the
red line is the theoretical collision
moment.
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Integrals of motion in the Calogero system

The function calogero_integral has two optional parameters: n
and k. n is the number of bodies, k is the number of the integral.
It should be noted that when b is positive, the matrix L is complex
but its trace is real. This function is appropriately simplified and
returns a real function with real coefficients.
For example, the integral F1 in the previous five-body problem can
be obtained as follows:

sage: calogero_integral(1,n)
p0 + p1 + p2 + p3 + p4

This tool is very useful to check conservativity of difference scheme.
Linear problems whit quadratic integrals create vain expectations.

27 / 38



FDM for Sage Calogero system Calogero system in Sage Integrals Singularity in Cauchy problem Kahan method Conclusion

Integrals of motion in the Calogero system

The integral of energy in
the Caloger system is not
quadratic, so even the
symplectic Runge-Kutta
method does not conserve
it. The picture on the right
shows the dependence of
F2 for the previous
five-body problem.
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Observation

Although there is a case
where these integrals increase
monotonically near the
collision point, there is no
sharp jump like when the
explicit Runge-Kutta method
is applied to classic
three-dimensional many-body
problems.
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This implies that the system Calogero is simple and does not fully
exhibit the characteristics of the explicit Runge-Kutta method.
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The problem of determining the singularity

In 2003 G.I. Marchuk asked the following question:

Problem of G.I. Marchuk, 2003
For a given Cauchy problem and interval a < x < b determine the
position of moving singular points in this interval and their orders
by analyzing one or several approximate solutions of the Cauchy
problem.

In 2005, E. A. Al’shina suggested to use the complex Rosenbrock
scheme of the first order (CROS), for which the approximate
solution tends to a finite value, when the exact solution has a pole.
Ref.: E. A. Al’shina et al. // Computational Mathematics and
Mathematical Physics, vol. 45, no. 10, pp. 1769–1779, 2005.
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Regular points

At regular points the approximate solution x(tn,∆t) can be
expanded in an asymptotic series

x(tn,∆t) = φ(tn) + r(tn)∆tp,

where x = φ(t) is the exact solution and p is the order of
approximation or effective accuracy order. Therefore, at regular
points the ratio

x(tn,∆t)− x(tn,∆t/2)

x(tn,∆t/2)− x(tn,∆t/22)
≈

1− 1
2p

1
2p − 1

22p

= 2p
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Singular points

Theorem (Painlevé, 1897)

A moving singular point of a nonsingular system is always algebraic,
i.e., in its vicinity the solution can be expanded in a Puiseux series:

x = C1(t− a)r + . . . , r ∈ Q

The smallest r in the sequence is defined as the order of singularity
in this singularity. This order can be used to determine the type of
singularity.
Assuming that

x(tn,∆t) ≃ C1(t− a)r + . . .

at in the vicinity of the point t = a, then
x(tn,∆t)− x(tn,∆t/2)

x(tn,∆t/2)− x(tn,∆t/22)
≈ 2r

It is the special property of CROS scheme.
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Apply Alshina’s method to determine the order of singularity
in the Calogero system in Sage

In FDM, the function eff_order can return the time-related peff
based on the CROS scheme. This function has three optional
parameters:
— problem is a Cauchy problem,
— u is initial moment,
— N is the number of points.

Use this method to numerically determine the order of singularity of
the previous five-body problem as follows:

sage: eff_order(problem_calogero,q0,N=100)
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Apply Alshina’s method to determine the order of singularity
in the Calogero system in Sage
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From the implicit function theorem it follows that in the previous
five-body problem at the collision point the coordinates of the
bodies have an algebraic singularity of the order of 1

2 . There is no
theoretical explanation for the sharp jumps near the starting and
collision point.
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Kahan method

Since 1990s the difference scheme, defining birational map between
layers, investigated, see talk of Lapshenkova at PCA’2024.
For Hamiltonian system with

H = T (p) + U(q),

we can write such a scheme:

p̂− p = −∂U

∂q
(q)∆t, q̂ − q = +

∂T

∂q
(p̂)∆t.

It is a birational map:
(p, q) → (p̂, q̂) :

p̂ = p− ∂U

∂q
(q)∆t,

q̂ = q +
∂T

∂q
(p̂)∆t,

(p̂, q̂) → (p, q) :

q = q̂ − ∂T

∂q
(p̂)∆t,

p = p̂+
∂U

∂q
(q)∆t,
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Kahan method and Calogero system

The Calogero system define algebraic, but non rational
correspondence between initial and final data. Thus Kahan method
is not natural for this problem.
We believe that the Calogero system is the example when Kahan
method is bed choice among numerical methods.
We want to investigate this bad case in future.
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Conclusion

The completely integrable dynamical Calogero system, which
describes the one-dimensional many-body problem, allows creating
a convenient tool for testing difference schemes by means that do
not go beyond the algebraic framework.
We tested:

preservation of the integrals by simplectic Runge-Kutta
schemes,
Alshina’s method for the determination of movable singular
points (here we found the strange point where peff has a
jump),
Kahan method, for which the Calogero system is convenient,
but not natural.
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Thank you for the attention!
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