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Abstract. For type An, SLn+1(C), all coefficients of the BK decoration func-
tion are equal one, because all weights are minuscule. This is not the case for
other types. For types BCD, we prove that the coefficients are powers of two
(zero power is one). We propose an algorithm which computes these coeffi-
cients. The complexity of the algorithm is comparable with the complexity of
writing the BK decoration function.

1. i-trails and generalized minors
1.1. Notation
Let G be a simply connected connected simple algebraic group or rank r, B, B− ⊂
G its Borel subgroups, T := B ∩B− the maximal torus, W = NormG(T )/T Weyl
group, U , U− be unipotent radicals of B, B−, A = (ai,j) the Cartan matrix of
G with an index set I = {1, 2, · · · , n}. We define g = Lie(G) with Chevalley
generators ei, fi, hi (i ∈ I), a Cartan subalgebra h and the canonical pairing 〈, 〉
between h and h∗. Let Λi denote the i-th fundamental weight, that is, 〈hj ,Λi〉 = δj,i
and P = ⊕i∈IZΛi be the weight lattice, P+ = ⊕i∈IZ≥0Λi the positive weight
lattice, P ∗ = ⊕i∈IZhi the dual weight lattice, {αi} (i ∈ I) the set of simple
roots. For each λ ∈ P+, let V (λ) denote the finite dimensional irreducible g-
module with highest weight λ. Let Uq(g) be the quantized universal enveloping
algebra with generators Ei, Fi (i ∈ I) and Kλ (λ ∈ P ) and Uq(g)− ⊂ Uq(g)
be the subalgebra generated by {Fi}i∈I . It is well-known that Uq(g)− has the
crystal base (L(∞), B(∞)). For two integers l, m ∈ Z such that l ≤ m, one sets
[l,m] := {l, l + 1, · · · ,m− 1,m}.

1.2. A birational map
Let us recall a definition of B−w0

, where w0 is the longest element in W , and an
open embedding (C×)N ↪→ B−w0

associated with a reduced word i = (i1, i2, · · · , iN )
of w0.
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First, for i ∈ I and t ∈ C, we put

xi(t) := exp(tei), yi(t) := exp(tfi) ∈ G.
There exists the canonical embedding φi : SL2(C)→ G satisfying

xi(t) = φi

((
1 t
0 1

))
, yi(t) = φi

((
1 0
t 1

))
.

Using the embedding, one puts

thi := φi

((
t 0
0 t−1

))
∈ T

and

x−i(t) := yi(t)t
−hi = φi

((
t−1 0
1 t

))
∈ G

for i ∈ I and t ∈ C×. One can construct a representative of a simple reflection
si ∈W = NormG(T )/T by

si := xi(−1)yi(1)xi(−1) ∈ NormG(T )

for each i ∈ I. For w ∈ W , one can define a representative w ∈ NormG(T ) by the
rule

uv = u · v if l(uv) = l(u) + l(v),

where l is the length function on W . We define a variety B−w0
:= B−∩Uw0U . One

defines a map θ−i : (C×)N → G associated with a reduced word i = (i1, · · · , iN ) of
w0 ∈W by

θ−i (t1, · · · , tN ) := x−i1(t1) · · ·x−iN (tN ). (1.1)

Proposition 1.1 ( [2]). The map θ−i is an open embedding from (C×)N to B−w0
.

1.3. Generalized minors and i-trails
Let G0 := U−TU ⊂ G denote the open subset whose elements x ∈ G0 are uniquely
decomposed as x = [x]−[x]0[x]+ with some [x]− ∈ U−, [x]0 ∈ T and [x]+ ∈ U .

Definition 1.2 ( [4]). For u, v ∈ W and i ∈ I, the generalized minor ∆uΛi,vΛi is
defined as the regular function on G such that

∆uΛi,vΛi(x) = ([u−1xv]0)Λi

for any x ∈ uG0v
−1. Here, for t ∈ C× and j ∈ I, we define (thj )Λi = (tΛi(hj)) and

extend it to the group homomorphism T → C×.

For calculations of generalized minors, one can use i-trails [2]. Here in this
subsection, we take i = (i1, · · · , il) as a sequence of indices from I. Let us review
pre-i-trails and i-trails.

Definition 1.3. For a finite dimensional representation V of g, two weights γ, δ
of V and a sequence i = (i1, · · · , il) of indices from I, a sequence π = (γ =
γ0, γ1, · · · , γl = δ) is said to be a pre-i-trail from γ to δ if γ1, · · · , γl−1 ∈ P and for
k ∈ [1, l], it holds γk−1 − γk = ckαik with some nonnegative integer ck.
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We can easily check that for k ∈ [1, l], it holds

ck =
γk−1 − γk

2
(hik). (1.2)

Definition 1.4 ( [2]). We consider the setting of Definition 1.3. If a pre-i-trail π
from γ to δ satisfies the condition
• ec1i1 e

c2
i2
· · · eclil is a non-zero linear map from Vδ to Vγ ,

then π is said to be an i-trail from γ to δ, where V = ⊕µVµ is the weight decom-
position of V .

For a pre-i-trail π = (γ0, γ1, · · · , γl) and k ∈ [1, l], we put

dk(π) :=
γk−1 + γk

2
(hik). (1.3)

One obtains dk(π) = ck + γk(hik) ∈ Z by (1.2). If γk−1 = sikγk then dk(π) = 0.

Lemma 1.5 ( [8]). Let γ, δ be weights of a finite dimensional representation V of
g. Let i = (i1, · · · , il) be a sequence of indices from I and π = (γ0, γ1, · · · , γl),
π′ = (γ′0, γ

′
1, · · · , γ′l) be two pre-i-trails from γ to δ. If dk(π) = dk(π′) for all

k ∈ [1, l] then π = π′.

For a sequence i = (i1, · · · , il) of indices from I and t1, · · · , tl ∈ C×, just as in
(1.1), we set

θ−i (t1, · · · , tl) := x−i1(t1) · · ·x−il(tl) ∈ G.
Then the following theorem holds:

Theorem 1.6 ( [2]). For u, v ∈W and i ∈ I, it holds

∆uΛi,vΛi(θ
−
i (t1, · · · , tl)) =

∑
π

Cπt
d1(π)
1 · · · tdl(π)

l ,

where Cπ is a positive integer and π runs over all i-trails from −uΛi to −vΛi in
V (−w0Λi).

By this theorem and Lemma 1.5, for each monomialM in ∆uΛi,vΛi(θ
−
i (t1, · · · , tl)),

there uniquely exists a corresponding i-trail π from −uΛi to −vΛi satisfying
M = t

d1(π)
1 · · · tdl(π)

l .

2. The Berenstein-Kazhdan decoration functions and i-trails
2.1. Geometric crystal structure on B−w0

Defining maps

γi : B−w0
→ C×, εi : B−w0

→ C×, ei : C× ×B−w0
→ B−w0

on B−w0
= B−∩Uw0U , we get a g-geometric crystal (B−w0

, {ei}i∈I , {γi}i∈I , {εi}i∈I)
[1]. For the definition of maps, refer to Sect.3 of the paper [8].

The variety T ·B−w0
has a positive structure θi : T ×(C×)l(w0) → T ·B−w0

asso-
ciated with each reduced word i of w0 so that we obtain a crystalX∗(T×(C×)l(w0))
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by the tropicalization functor. The Berenstein-Kazhdan decoration function ΦBK
on T ·B−w0

is defined as

ΦBK =
∑
i∈I

∆w0Λi,siΛi

∆w0Λi,Λi

+
∑
i∈I

∆w0siΛi,Λi

∆w0Λi,Λi

. (2.1)

Here, Λi is the i-th fundamental weight, for u, v ∈ W , the function ∆uΛi,vΛi is a
generalized minor.

Let us define a regular function ΦhBK on B−w0
as follows:

ΦhBK :=
∑
i∈I

∆w0Λi,siΛi .

In [13], Kanakubo and Nakashima proved that the function ΦhBK is an upper half-
decoration on the geometric crystal B−w0

.
An open embedding θ−i : (C×)N ↪→ B−w0

in Proposition 1.1, which gives a
positive structure on (B−w0

,ΦhBK). Thus, one obtains a crystal Bθ−i ,ΦhBK

B̃θ−i ,ΦhBK
:= {z ∈ X∗((C×)N )|Trop(ΦhBK ◦ θ−i )(z) ≥ 0},

Bθ−i ,ΦhBK
= (B̃θ−i ,ΦhBK

, {ẽi}i∈I , {f̃i}i∈I , {ε̃i}i∈I , {ϕ̃i}i∈I , {γ̃i}i∈I). (2.2)

Here, we omitted the notation of restrictions |B̃
θ
−
i
,Φh

BK

for ẽi, f̃i, ε̃i, ϕ̃i and γ̃i.

Theorem 2.1 ( [13]). For each reduced word i of the longest element w0, the set
Bθ−i ,ΦhBK

is a Lg-crystal isomorphic to the crystal B(∞).

2.2. i-trails and BK decoration functions
The main result of ( [9], Theorem 4.4) allows us, for all reduced words i, to get
all monomials in ∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ) explicitly in the following cases (the
numbering of Dynkin diagram is same as in [6]), which covers a significantly wide
range of indices i ∈ I comparing with [8]. Due to this theorem is computed an

g An Bn Cn Dn E6 E7 E8 F4 G2

i all i ∈ I all i ∈ I all i ∈ I all i ∈ I 1, 2, 4, 5, 6 1, 5, 6, 7 1, 7 1, 4 all i ∈ I

edge-colored directed graph DG whose vertices are labelled by the monomials in
∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ), and edges are colored by letters of {1, 2, · · · , N}. We
only use easy computations of the Weyl group action on simple roots and weights
and multiplications of Laurent monomials. In particular, in case of g is of classical
type (An, Bn, Cn or Dn) or type G2, by the tropicalization, we get an explicit
form of the crystal

{z ∈ X∗((C×)N )|Trop(ΦhBK ◦ θ−i )(z) ≥ 0}, (2.3)

for any reduced word i.
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2.3. Algorithm for computing coefficients of BK decoration functions for classical
types ABCD

A problem on computing coefficients of Berenstein-Kazhdan decoration arises in
study of redundant inequalities defining the cone (2.3) (see [10]).

In case of g is of classical type An, all weights are minuscule, and because of
that all coefficients are equal one [8], and there are no redundancy [10].

In case of g is of classical type Bn, Cn or Dn this is not the case. We have
the following

Theorem 2.2. In case of g is of classical type Bn, Cn or Dn, coefficients with
i-trails take the form 2k, k ≥ 0.

For any reduced decomposition i, the portion of i-trails π with coefficients
bigger than 1 is rather small, and we have an algorithm for computing such cases.

For the proof of Theorem 3.2 we provide an algorithm to compute all co-
efficients in ∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ). Firstly, we use the algorithm of [9] (see
also [11]) to get monomials in ∆w0Λi,siΛi◦θ−i (t1, · · · , tN ), and edge-colored directed
graph DG. Then we apply the following procedure:

set S=all monomials
set k=1
while S is not empty

S1=get all pairs (a,b) of S,
such that a*b is perfect square Laurent monomial

for each pair (a,b)∈S1 set coefficient of
√
a ∗ b to 2k

set S=S1

The proof of correctness of this algorithm is essentially the proof of Theorem
3.2. To elaborate why this algorithm always halts we use correspondence between
monomials with coefficients 2k and k-dimensional faces of Newton polytope of
∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ) ( [3]), so it runs no more than length of w0 cycles.

This procedure can also be used to compute Gross-Hacking-Keel-Kontsevich
potential with proper coefficients [11] (set same coefficients for corresponding
monomials) and prove that coefficients of Gross-Hacking-Keel-Kontsevich poten-
tial take the form 2k, k ≥ 0.

2.4. Algorithm complexity
From [11] we know that complexity of computing ∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ) con-
sisting of K monomials is

O(r4K) ∼ O(r2 ∗ length of string representation)

where length of string representation ∼ O(r2K). Overall complexity of computing
coefficients is bounded by product of number of cycles (length w0 ∼ r2) and square
of number of monomials

O(r2 ∗K2) ≤ O(length of string representation2).
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This means that whole Berenstein-Kazhdan decoration function and Gross-Hacking-
Keel-Kontsevich potential computation algorithm is polynomial (square) in length
of string representation of answer.
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