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Abstract. We de�ne integral geometric analogues of the Chern classes for
real vector bundle on a smooth real variety. More precisely, we de�ne the
Chern densities of a real bundle. These densities are analogues of the Chern
forms of a complex vector bundle and inherit some of their properties.
(The text is a summary of a report on the conference PCA'2024 in Euler
International Mathematical Institute, St. Petersburg)

The zeros of random systems of functions

We begin with a theorem on the number of common zeros of random systems of
functions from [1]. Let V be a �nite-dimensional space of smooth functions on an
n-dimensional di�erentiable manifold X. Consider a random system of equations

f1 = . . . = fn = 0, 0 6= fi ∈ V (1)

Denote by N(f1, . . . , fn) the number of solutions of the system (1). We de�ne
the randomness of the system using a certain scalar product in V as follows: we
consider the functions fi as independent random vectors in V with respect to
the Gaussian measure chosen in V according to the chosen scalar product. The
situation with a more general choice of probability distribution in V is described
in [2]. Let M(V ) denote the expected value of the random variable N(f1, . . . , fn).
Next, for the calculation of M(V ), we will need the notion of a Banach set on X,
as well as the notion of a volume of the Banach set.

De�niton 1. Let T ∗X be a cotangent bundle ofX, and E(x) be a convex centrally
symmetric compact set in the cotangent space T ∗xX of X at the point x. The
collection E = {E(x) ⊂ T ∗xX |x ∈ X} is called a Banach set in X.

De�niton 2. Consider the domain
⋃

x∈X E(x) ⊂ T ∗(X). It's volume relative to
the standard symplectic structure in T ∗X is called the volume of Banach set and
is denoted by vol(E).
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For x ∈ X let's de�ne the linear functional θ(x) on V as θ(x)(f) = f(x). Next we
assume that ∀x ∈ X, ∃f ∈ V : f(x) 6= 0. That's why the set θ(X) in V ∗ does not
contain 0.

De�niton 3. Let's de�ne the mapping Θ: X → V ∗ as Θ(x) = θ(x)/
√
〈θ(x), θ(x)〉∗,

where 〈∗, ∗〉∗ is the scalar product in the space V ∗ associated with the scalar prod-
uct 〈∗, ∗〉 in V . Let dΘx : TxX → V ∗ be a di�erential of Θ at the point x. Denote
by d∗Θx : V → T ∗xX the adjoint linear operator, and de�ne the Banach set EV
by EV (x) = d∗Θx(B), where B is the unit ball in V centered at the origin. The
compact set EV (x) is an ellipsoid. We note that in a more general context discussed
in [Ka1], arbitrary Banach sets on X can arise.

Theorem 1. M(V ) = n!/(2π)n vol(EV )

Example 1. Let X be the unit circle S1, Vm the space of trigonometric polyno-
mials f(θ) =

∑
k≤m ak cos(kθ) + bk sin(kθ) of degree m. Then (see [6])

M(Vm) =

√
m(m+ 1)

3

For trigonometric polynomials in many variables see [7]; see also [8].

Now let's state a similar theorem in the case where we consider n spaces Vi
and equations f1 = . . . = fn = 0, where fi ∈ Vi. For this, we will need the concept
of the mixed volume of Banach sets. Using Minkowski sum and homotheties, we
can form linear combinations of convex sets with non-negative coe�cients. The
linear combination of Banach sets is de�ned by

(
∑
i

λiEi)(x) =
∑
i

λiEi(x).

For n Banach sets E1, . . . , En the volume of λ1E1 + . . . + λnEn is a homogeneous
polynomial of degree n in λ1, . . . , λn. Its coe�cient at λ1 · . . . · λn divided by n! is
called the mixed volume of Banach sets E1, . . . , En. The mixed volume of Banach
sets E1, . . . , En is denoted by vol(E1, . . . , En).

Theorem 2. Let M(V1, . . . , Vn) denote the expectation of the random variable

N(f1, . . . , fn). Then it holds that

M(V1, . . . , Vn) =
n!

(2π)n
vol(EV1 , . . . , EVn)

The ring of Banach sets

Next we need a concept of the ring of Banach sets. It arises as an analogue of the
well-known concept of a ring of convex bodies, �rst de�ned in [3]. There are several
di�erent versions of this concept. Here we construct an analogue of the de�nition
from [4]. We call the formal di�erence E − B of Banach sets the virtual Banach

set. Virtual Banach sets form a vector space, where multiplication by negative
numbers is de�ned by (−1) · (E − B) = B − E .
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The following notations are used below

• S =
⊕

0≤i Si � the graded symmetric algebra of the space of virtual Banach sets
on the manifold X

• I � the linear functional on the space S de�ned by 1) ISk
= 0 for k 6= n, and 2)

I(E1 · . . . · En) = vol(E1, . . . , En)

• L(x, y) = I(x · y) � the symmetric bilinear form on the vector space S

• J � the kernel of the form L.

Lemma 1. J is a homogeneous ideal of the graded ring S.

We will call ring S = S/J the ring of virtual Banach sets.

Corollary 1. The following statements hold:

(i) S0 = R
(ii) dimSn = 1

(iii) The graded ring S is generated by elements of degree 1

(iv) The mappings Sp×Sn−p → R, de�ned as (η, ξ) 7→ L(η, ξ), are non-degenerate

pairings.

Next for n virtual Banach sets B1, . . . ,Bn, we use the notation

vol(B1 · . . . · Bn) = I(B1 · . . . · Bn) = vol(B1, . . . ,Bn)

Zeros of random sections

Transitioning to zeros of random sections of vector bundles, without formulating
precise theorems, we will �rst brie�y describe the situation in the case when con-
sidering zeros of sections of an n-dimensional vector bundle F on X. Just as in
the case of functions we consider a �nite dimensional space V of smooth sections
of F . Here we denote by M(V ;U) the expectation of the number of zeros of ran-
dom section s ∈ V contained in the open set U ⊂ X. By ResUB we denote the
constraint of B ∈ S on the subvariety U .

Theorem 3. There exists the unique element B ∈ Sn, such that for any U ⊂ X

M(V ;U) =
n!

(2π)n
vol(ResUB)

Further results can be approximately described as follows. We associate to
an element s of degree k of the ring of Banach sets S a certain k-density dk(s)
on X and interpret the ring S as a ring of these densities. Such densities serve as
analogues of Chern forms, representing Chern classes of complex vector bundles,
and inherit some properties of Chern forms.

In conclusion, let us de�ne the density dk(s). An alternative construction of
multiplication in the density ring is given in [1]; see also [5].
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De�niton 4. LetH be the subspace of TxX generated by tangent vectors ξ1, . . . , ξk,
H⊥ ⊂ T ∗xX the orthogonal complement to H, and πH : T ∗xX → T ∗xX/H

⊥ the pro-
jection map. The volume form on T ∗xX/H

⊥ is de�ned by ω(x) = ξ1 ∧ . . .∧ ξm. Let
B1, . . . ,Bk be Banach sets on X. Then dk(B1 · . . . · Bk)(ξ1, . . . , ξm) is the mixed
k-dimensional volume of convex k-dimensional sets πHB1(x), . . . , πHBk(x) in the
sense of the volume form ω(x).

Lemma 2. For di�erent elements s and t of degree k in the ring S, the densities

dk(s) and dk(t) are di�erent.

Thus, the ring of virtual Banach sets S can be considered as a certain ring
of densities on the manifold X.

The following statement is an analogue of the BKK formula for Banach sets
and for densities di.

Theorem 4. For any Banach sets B1, . . . ,Bk the equality

d1(B1) · . . . · d1(Bk) = k! dk(B1 · . . . · Bk)

holds.
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