Solution of Tropical Best Approximation Problems

Nikolai Krivulin

Faculty of Mathematics and Mechanics St. Petersburg State University St. Petersburg, Russia
E-mail: nkk<at>math.spbu.ru
URL: http://www.math.spbu.ru/user/krivulin/
Polynomial Computer Algebra 2024 (PCA '2024)
Euler International Mathematical Institute, St. Petersburg, Russia April 15-20, 2024

Outline

Introduction

Tropical Algebra
Idempotent Semifield
Algebra of Matrices and Vectors
Polynomials and Rational Functions
Best Approximate Solutions
One-Sided Equation
Two-Sided Equation
Tropical Approximation
Polynomial Approximation
Rational Approximation
Examples
Approximation in Max-Plus Algebra
Conclusion

Introduction

- We consider an approximation problem of an unknown function $y=f(x)$ given a set of samples $\left(x_{i}, y_{i}\right)$ of function input/output
- Let $F(x ; \boldsymbol{\theta})$ be an approximating function that depends on the vector $\boldsymbol{\theta}$ of unknown parameters that are to be determined
- The purpose is to find a best minimax approximate solution, which is defined in the sense of a distance function d as follows:

$$
\boldsymbol{\theta}_{*}=\arg \min _{\boldsymbol{\theta}} \max _{i} d\left(F\left(x_{i} ; \boldsymbol{\theta}\right), y_{i}\right)
$$

- We formulate the problem in the framework of a tropical semifield (a semiring with idempotent addition and invertible multiplication)
- As approximating functions, we use tropical Puiseux polynomials (which allow rational exponents) and tropical rational functions
- We apply the results to the best Chebyshev approximation of real functions with piecewise linear functions taken as approximants

Tropical Algebra

Idempotent Algebra: Idempotent Semifield

Idempotent Semifield

- Idempotent semifield: the algebraic system $\langle\mathcal{K}, \mathbb{0}, \mathbb{1}, \oplus, \otimes\rangle$
- The carrier set \mathbb{X} has neutral elements, zero \mathbb{O} and identity $\mathbb{1}$
- The binary operations \oplus and \otimes are associative and commutative
- Multiplication \otimes distributes over addition
- Addition \oplus is idempotent: $x \oplus x=x$ for all $x \in \mathbb{X}$
- Multiplication \otimes is invertible: for each nonzero $x \in \mathbb{K}$, there exists an inverse $x^{-1} \in \mathbb{X}$ such that $x \otimes x^{-1}=\mathbb{1}$
- Linear order: the order $x \leq y \Longleftrightarrow x \oplus y=y$ is a total order
- Algebraic completeness: the equation $x^{p}=a$ is solvable for any $a \in \mathcal{X}$ and integer p (there exist powers with rational exponents)
- Notational convention: the multiplication sign \otimes is omitted

Semifield $\mathbb{R}_{\text {max },+}$ (Max-Plus Algebra)

- Max-Plus algebra: $\mathbb{R}_{\max ,+}=\langle\mathbb{R} \cup\{-\infty\},-\infty, 0, \max ,+\rangle$
- Carrier set: $\mathbb{K}=\mathbb{R} \cup\{-\infty\}$; zero and one: $\mathbb{O}=-\infty, \mathbb{1}=0$
- Binary operations: $\oplus=\max$ and $\otimes=+$
- Idempotent addition: $x \oplus x=x$ for each $x \in \mathbb{X}(=\max (x, x))$
- Multiplicative inverse: there exists x^{-1} for each $x \in \mathbb{R}(=-x)$
- Power notation: x^{y} is well-defined for any $x, y \in \mathbb{R} \quad(=x \times y)$
- More real idempotent semifields:

$$
\begin{aligned}
\mathbb{R}_{\min ,+} & =\langle\mathbb{R} \cup\{+\infty\},+\infty, 0, \min ,+\rangle \\
\mathbb{R}_{\max } & =\left\langle\mathbb{R}_{+} \cup\{0\}, 0,1, \max , \times\right\rangle \\
\mathbb{R}_{\min } & =\left\langle\mathbb{R}_{+} \cup\{+\infty\},+\infty, 1, \min , \times\right\rangle
\end{aligned}
$$

where $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\}$

Algebra of Matrices and Vectors

- Matrix operations follow the standard entrywise rules, where addition and multiplication are replaced by \oplus and \otimes
- A matrix without zero rows and columns is called regular
- A matrix of a single column (row) is a column (row) vector
- If a vector has no zero elements, it is called regular
- For a column vector $\boldsymbol{x}=\left(x_{j}\right)$, its conjugate is a row vector $\boldsymbol{x}^{-}=\left(x_{j}^{-}\right)$with $x_{j}^{-}=x_{j}^{-1}$ if $x_{j} \neq \mathbb{0}$, and $x_{j}^{-}=\mathbb{0}$ otherwise
- For regular vectors $\boldsymbol{x}=\left(x_{j}\right)$ and $\boldsymbol{y}=\left(y_{j}\right)$, a metric is given by

$$
d(\boldsymbol{x}, \boldsymbol{y})=\bigoplus_{j}\left(x_{j} y_{j}^{-1} \oplus x_{j}^{-1} y_{j}\right)=\boldsymbol{y}^{-} \boldsymbol{x} \oplus \boldsymbol{x}^{-} \boldsymbol{y}
$$

- In the context of $\mathbb{R}_{\max ,+}$, this metric is the Chebyshev metric

$$
d_{\infty}(\boldsymbol{x}, \boldsymbol{y})=\max _{j}\left|x_{j}-y_{j}\right|=\max _{j} \max \left(x_{j}-y_{j}, y_{j}-x_{j}\right)
$$

Polynomials and Rational Functions

Tropical Puiseux Polynomials

- A tropical Puiseux polynomial of n monomials is given by

$$
P(x)=\bigoplus_{j=1}^{n} \theta_{j} x^{p_{j}}, \quad x \neq \mathbb{0}
$$

where $p_{j} \in \mathbb{Q}$ are exponents and $\theta_{j} \in \mathbb{K}, \theta_{j} \neq \mathbb{O}$, are coefficients

- When defined in the context of $\mathbb{R}_{\text {max, }}$ (max-plus algebra), a polynomial is represented in terms of the usual operations as

$$
P(x)=\max _{1 \leq j \leq n}\left(p_{j} x+\theta_{j}\right)
$$

and therefore specifies a piecewise-linear convex function on \mathbb{R}

Tropical Rational Functions

- A tropical rational function is defined by two polynomials as

$$
R(x)=\frac{P(x)}{Q(x)}, \quad P(x)=\bigoplus_{j=1}^{n} \theta_{j} x^{p_{j}}, \quad Q(x)=\bigoplus_{k=1}^{l} \sigma_{k} x^{q_{k}}, \quad x \neq \mathbb{0}
$$

- In the framework of $\mathbb{R}_{\max ,+}$, the rational function can be written as

$$
R(x)=P(x)-Q(x)=\max _{1 \leq j \leq n}\left(p_{j} x+\theta_{j}\right)-\max _{1 \leq k \leq l}\left(q_{k} x+\sigma_{k}\right),
$$

which presents a difference of piecewise linear convex functions

- We observe that any arbitrary continuous function can be represented as the difference of two convex functions

Best Approximate Solutions: One-Sided Equation

- Given an $(m \times n)$-matrix \boldsymbol{A} and m-vector \boldsymbol{b}, the problem is to find regular n-vectors \boldsymbol{x} that solve the one-sided equation

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

- The next result offers a best approximate solution to the equation

Theorem (K. 2004, 2009, 2012)

Let \boldsymbol{A} be a regular matrix, \boldsymbol{b} regular vector and $\Delta=\left(\boldsymbol{A}\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}\right)^{-} \boldsymbol{b}$. Then, the following statements hold:

1. The best approximate error for the equation is equal to $\sqrt{\Delta}$;
2. The best approximate solution of the equation is given by

$$
\boldsymbol{x}_{*}=\sqrt{\Delta}\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-} ;
$$

3. If $\Delta=\mathbb{1}$, then $\boldsymbol{x}_{*}=\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}$is an exact (the maximum) solution

Best Approximate Solutions

Two-Sided Equation

- Let \boldsymbol{A} and \boldsymbol{B} be given matrices of order $(m \times n)$ and $(m \times l)$
- Consider the problem to find regular vectors \boldsymbol{x} and \boldsymbol{y} of order n and l, which are solutions of the two-sided equation

$$
\boldsymbol{A x}=\boldsymbol{B} \boldsymbol{y}
$$

- To obtain a best approximate solution of the two-sided equation, we implement an alternating algorithm (K. 2023)
- The algorithm applies the result of Theorem to solve a series of one-sided equations derived from the two-sided equation
- The equations are obtained from the two-sided equation where the left and right sides are alternately replaced by constant vectors

Alternating Algorithm

- Given a vector x_{0}, the algorithm examines the equations

$$
\boldsymbol{A} \boldsymbol{x}_{0}=\boldsymbol{B} \boldsymbol{y}_{1}, \quad \boldsymbol{A} \boldsymbol{x}_{2}=\boldsymbol{B} \boldsymbol{y}_{1}, \quad \boldsymbol{A} \boldsymbol{x}_{2}=\boldsymbol{B} \boldsymbol{y}_{3}, \quad \boldsymbol{A} \boldsymbol{x}_{4}=\boldsymbol{B} \boldsymbol{y}_{3}, \quad \ldots
$$

as one-sided equations in the unknowns $\boldsymbol{y}_{1}, \boldsymbol{x}_{2}, \boldsymbol{y}_{3}, \boldsymbol{x}_{4}, \ldots$

- The alternating algorithm successively calculate

$$
\begin{array}{ll}
\boldsymbol{y}_{1}=\sqrt{\Delta_{0}}\left(\left(\boldsymbol{A} \boldsymbol{x}_{0}\right)^{-} \boldsymbol{B}\right)^{-}, & \Delta_{0}=\left(\boldsymbol{B}\left(\left(\boldsymbol{A} \boldsymbol{x}_{0}\right)^{-} \boldsymbol{B}\right)^{-}\right)^{-} \boldsymbol{A} \boldsymbol{x}_{0}, \\
\boldsymbol{x}_{2}=\sqrt{\Delta_{1}}\left(\left(\boldsymbol{B} \boldsymbol{y}_{1}\right)^{-} \boldsymbol{A}\right)^{-}, & \Delta_{1}=\left(\boldsymbol{A}\left(\left(\boldsymbol{B} \boldsymbol{y}_{1}\right)^{-} \boldsymbol{A}\right)^{-}\right)^{-} \boldsymbol{B} \boldsymbol{y}_{1}, \\
\boldsymbol{y}_{3}=\sqrt{\Delta_{2}}\left(\left(\boldsymbol{A} \boldsymbol{x}_{2}\right)^{-} \boldsymbol{B}\right)^{-}, & \Delta_{2}=\left(\boldsymbol{B}\left(\left(\boldsymbol{A} \boldsymbol{x}_{2}\right)^{-} \boldsymbol{B}\right)^{-}\right)^{-} \boldsymbol{A} \boldsymbol{x}_{2},
\end{array}
$$

- One can verify that the sequence $\Delta_{0}, \Delta_{1}, \ldots$ has a limit $\Delta_{*} \geq \mathbb{1}$
- If $\Delta_{*}=\mathbb{1}$, then the two-sided equation has a solution ($\boldsymbol{x}_{*}, \boldsymbol{y}_{*}$)
- Otherwise the pair ($\boldsymbol{x}_{*}, \boldsymbol{y}_{*}$) specifies a best approximate solution

Tropical Approximation

Tropical Approximation: Polynomial Approximation

- Suppose there are m samples $\left(x_{i}, y_{i}\right)$ where x_{i} and $y_{i}=f\left(x_{i}\right)$ are input and output of an unknown function $f: \mathbb{X} \rightarrow \mathbb{K}$
- Consider the problem of best approximation of these sample data by polynomials that have n monomials and are given by

$$
P(x)=\bigoplus_{j=1}^{n} \theta_{j} x^{p_{j}}
$$

with known exponents $p_{j} \in \mathbb{Q}$ and unknown coefficients $\theta_{j} \in \mathbb{X}$

- The problem consists in finding the unknown coefficients that make the following equations hold exactly or approximately:

$$
P\left(x_{i}\right)=\theta_{1} x_{i}^{p_{1}} \oplus \cdots \oplus \theta_{n} x_{i}^{p_{n}}=y_{i} \quad i=1, \ldots, m
$$

Vector Representation

- Consider the system of scalar equations

$$
\theta_{1} x_{i}^{p_{1}} \oplus \cdots \oplus \theta_{n} x_{i}^{p_{n}}=y_{i} \quad i=1, \ldots, m
$$

- With the matrix-vector notation

$$
\boldsymbol{X}=\left(\begin{array}{ccc}
x_{1}^{p_{1}} & \ldots & x_{1}^{p_{n}} \\
\vdots & & \vdots \\
x_{m}^{p_{1}} & \ldots & x_{m}^{p_{n}}
\end{array}\right), \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right), \quad \boldsymbol{\theta}=\left(\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{n}
\end{array}\right)
$$

we transform the system into the one-sided vector equation

$$
\boldsymbol{X} \boldsymbol{\theta}=\boldsymbol{y}
$$

- Application of Theorem yields the squared approximation error Δ^{*} and corresponding vector $\boldsymbol{\theta}_{*}$ of coefficients, which are given by

$$
\Delta_{*}=\left(\boldsymbol{X}\left(\boldsymbol{y}^{-} \boldsymbol{X}\right)^{-}\right)^{-} \boldsymbol{y}, \quad \boldsymbol{\theta}_{*}=\sqrt{\Delta_{*}}\left(\boldsymbol{y}^{-} \boldsymbol{X}\right)^{-}
$$

Rational Approximation

- Consider a rational function as an approximant, which is given by

$$
R(x)=\frac{P(x)}{Q(x)}, \quad P(x)=\bigoplus_{j=1}^{n} \theta_{j} x^{p_{j}}, \quad Q(x)=\bigoplus_{k=1}^{l} \sigma_{k} x^{q_{k}}
$$

- Given samples $x_{i}, y_{i} \in \mathbb{X}$ for $i=1, \ldots, m$, we find the coefficients in polynomials $P(x)$ and $Q(x)$ to best approximate the equations

$$
R\left(x_{i}\right)=y_{i}, \quad i=1, \ldots, m
$$

- We rewrite these equations as

$$
\theta_{1} x_{i}^{p_{1}} \oplus \cdots \oplus \theta_{n} x_{i}^{p_{n}}=y_{i}\left(\sigma_{1} x_{i}^{q_{1}} \oplus \cdots \oplus \sigma_{l} x_{i}^{q_{l}}\right), \quad i=1, \ldots, m
$$

Vector Representation

- To represent the problem in vector form, we introduce the notation

$$
\begin{gathered}
\boldsymbol{X}=\left(\begin{array}{ccc}
x_{1}^{p_{1}} & \ldots & x_{1}^{p_{n}} \\
\vdots & & \vdots \\
x_{m}^{p_{1}} & \ldots & x_{m}^{p_{n}}
\end{array}\right), \quad \boldsymbol{Y}=\left(\begin{array}{ccc}
y_{1} & & 0 \\
& \ddots & \\
0 & & y_{m}
\end{array}\right) \\
\boldsymbol{Z}=\left(\begin{array}{ccc}
x_{1}^{q_{1}} & \ldots & x_{1}^{q_{l}} \\
\vdots & & \vdots \\
x_{m}^{q_{1}} & \ldots & x_{m}^{q_{l}}
\end{array}\right), \quad \boldsymbol{\theta}=\left(\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{n}
\end{array}\right), \quad \boldsymbol{\sigma}=\left(\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{l}
\end{array}\right)
\end{gathered}
$$

- Then, the system takes the form of the two-sided vector equation

$$
X \theta=Y Z \sigma
$$

- We use Alternating Algorithm to find the squared approximation error Δ_{*} and obtain the vectors of coefficients $\boldsymbol{\theta}_{*}$ and σ_{*}

Examples Approximation in Max-Plus Algebra

Examples: Approximation in Max-Plus Algebra

- We consider examples in terms of $\mathbb{R}_{\max ,+}$ (max-plus algebra)
- In this setting, both tropical polynomials and rational functions can be represented as conventional piecewise linear functions
- We assume the polynomials have a fixed number of monomials, while the exponents of these monomials are not given in advance
- We combine random search to fix exponents, with the best approximation to find coefficients of monomials in the polynomials
- To reduce the feasible set of exponents in random search, we consider only polynomials with integer exponents

Examples

Approximation of Convex Function

- We consider $m=21$ input/output points $\left(x_{i}, y_{i}\right)$ from the function

$$
f(x)=x^{2}-3 x^{1 / 3}+5 / 2, \quad 0 \leq x \leq 2,
$$

where $x_{i}=(i-1) / 10$ and $y_{i}=f\left(x_{i}\right)$ for $i=1, \ldots, 21$

- We approximate the data by polynomials with $n=7$ monomials
- The exponents for the monomials are produced by random sampling from the discrete uniform distribution over $[-15,5]$
- For each sample set of exponents, coefficients of monomials are found using Theorem to minimize the approximation error
- After examining 10,000 sample sets, the minimum squared error is $\Delta_{*}=0.0481$ and the polynomial (in the conventional form) is

$$
\begin{aligned}
P_{*}(x)=\max (2.5240 & -15 x, 1.4096-3 x, 0.8736-x, 0.3503 \\
& -0.4760+x,-1.6720+2 x,-3.2853+3 x)
\end{aligned}
$$

Approximation of Convex Function

Figure: Approximation of $f(x)$ by a polynomial $P_{*}(x)$ with $n=7$ terms

Approximation of Non-Convex Function

- Suppose that data points $\left(x_{i}, y_{i}\right)$ are obtained from the function

$$
g(x)=3(x-1)^{2} \sin (x)+1 / 4, \quad 0 \leq x \leq 2
$$

- We approximate $g(x)$ by rational functions given by

$$
R(x)=P(x) / Q(x),
$$

where $P(x)$ and $Q(x)$ are polynomials of $n=6$ and $l=4$ terms

- Random sampling of 10,000 pairs of sets of exponent in [$-10,10$] and using Alternating Algorithm yield $\Delta_{*}=0.0701$
- The approximating function is $R_{*}(x)=P_{*}(x)-Q_{*}(x)$, where

$$
\begin{aligned}
P_{*}(x)= & \max (6.9455-3 x, 6.0860-2 x, 4.9978-x, 3.7461, \\
& 0.7639+2 x,-2.6361+4 x), \\
Q_{*}(x)= & \max (6.6880-5 x, 6.2962-3 x, 5.8009-2 x, 2.4211)
\end{aligned}
$$

Approximation of Non-Convex Function

Figure: Approximation of $g(x)$ by a rational function $R_{*}(x)$ with $n=6, l=4$

Conclusion

- We considered a best approximation problem in which a function is approximated from a set of input/output samples
- We formulated the problem in terms of a tropical semifield where addition is idempotent and multiplication is invertible
- We transformed the problem into solving tropical linear vector equations with an unknown vector on one side or on both sides
- We have derived an exact best approximate solution of the one-sided equation, obtained in direct analytical form
- To obtain a best approximate solution of the two-sided equation, we have used an iterative alternating algorithm
- As illustration, we presented results of best discrete Chebyshev approximation of real functions by piecewise linear functions

