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Abstract. We consider discrete best approximation problems in the frame-
work of tropical algebra, which focuses on semirings and semifields with idem-
potent addition. Given a set of samples from input and output of an unknown
function defined on an idempotent semifield, the problem is to find a best ap-
proximation of the function by tropical Puiseux polynomial and rational func-
tions. We describe a solution approach that transforms the problem into the
best approximation of linear vector equations. Application of this approach
yields a direct analytical solution for the polynomial approximation problem
and an iterative algorithmic solution for approximation by rational functions.
As an illustration, we present results of the best Chebyshev approximation
by piecewise linear functions.

Introduction
We consider a discrete approximation problem where an unknown function f(x) is
approximated given a set of samples (xi, yi) of function values yi = f(xi) at some
points xi. Let F (x;θ) be an approximating function that depends on the vector θ
of unknown parameters. A minimax best approximate solution to the problem is
defined in the sense of a distance function d to find

θ∗ = argmin
θ

max
i

d(F (xi;θ), yi). (1)

In this paper, we outline recent results concerning the investigation of the
best approximation problem in the framework of tropical algebra, which deals
with the theory and methods of semirings and semifields with idempotent addition
[1, 2, 3, 4, 5, 6]. An example of the tropical semifield is an extended set of reals,
where the addition is defined as maximum and the multiplication as arithmetic
addition (max-plus algebra).

We formulate problem (1) to approximate functions defined on a tropical
semifield (a semiring with idempotent addition and invertible multiplication). As
approximating functions, we use tropical analogues of Puiseux polynomials and
rational functions. The approximation error is defined by a generalized metric on
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the tropical vector space over the semifield. We note that in the case of max-plus
algebra, the Puiseux polynomials and rational functions are real piecewise linear
functions, whereas the metric coincides with the Chebyshev metric.

Tropical Puiseux polynomials arise in a range of research contexts from trop-
ical algebraic geometry to optimization problems in operations research [4, 6, 7,
8, 9]. Thus, the development of approximation techniques using tropical Puiseux
polynomial and rational functions can be considered of benefit to both tropical
algebra and its applications.

To solve the best approximation problems under study, we transform them
into solving tropical linear vector equations with an unknown vector on one side
(one-sided equations) or on both sides (two-sided equations). We handle the one-
sided equation by applying the results in [10, 11], which offer a direct analytical
solution to the problem. A best approximate solution of the two-sided equation
is obtained by using the iterative alternating algorithm proposed in [12]. Further
details on the solution approach and its implementation can be found in [13].

1. Definitions, Notation and Preliminary Results

In this section we outline basic definitions, notations and preliminary results that
provide a framework for the description of the solutions of tropical approximation
problems presented below. For more details on tropical (idempotent) algebra, one
can consult several works, including [1, 2, 3, 4, 5, 6].

1.1. Idempotent Semifield

Let X be a non-empty set that is equipped with binary operations ⊕ (addition) and
⊗ (multiplication), and contains distinct elements 0 (zero) and 1 (unit). Assume
that (X,⊕,0) is an idempotent commutative monoid, (X \ {0},⊗,1) is an Abelian
group and multiplication ⊗ distributes over addition ⊕. The algebraic system
(X,⊕,⊗,0,1) is commonly referred to as the tropical (idempotent) semifield.

The semifield has idempotent addition: for each x ∈ X the equality x⊕x = x
holds, and invertible multiplication: for each x ̸= 0, there exists x−1, such that
xx−1 = 1 (here and hereafter the multiplication sign ⊗ is omitted for brevity). It
is assumed that the equation xp = a has a unique solution x for any a ∈ X and
integer p > 0, which makes powers with rational exponents well defined.

Idempotent addition induces a partial order relation: x ≤ y if and only if
x⊕ y = y. The corresponding partial order is assumed to extend to a total order.

An example of the idempotent semifield under consideration is the real semi-
field Rmax,+ = (R ∪ {−∞},max,+,−∞, 0), also known as max-plus algebra. In
this semifield, we have ⊕ = max, ⊗ = +, 0 = −∞ and 1 = 0. The power xy

coincides with the product x× y. The inverse x−1 of any x ∈ R corresponds to the
opposite number −x. The order relation agrees with the usual linear order on R.
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1.2. Algebra of Matrices and Vectors
Matrix algebra over over a semifield is introduced in the usual way. Addition, multi-
plication and scalar multiplication of matrices follow the standard entrywise rules,
where addition and multiplication are replaced by ⊕ and ⊗. A matrix without
zero rows and columns is called regular.

A matrix that consists of a single column (row) is a column (row) vector. If
a vector has no zero elements, it is called regular.

For any nonzero column vector x = (xj), the multiplicative conjugate is the
row vector x− = (x−

j ) where x−
j = x−1

j if xj ̸= 0, and x−
j = 0 otherwise.

For any regular vectors x = (xj) and y = (yj), we define a distance function

d(x,y) =
⊕
j

(
xjy

−1
j ⊕ x−1

j yj
)
= y−x⊕ x−y.

In the context of Rmax,+, this function coincides with the Chebyshev metric

d∞(x,y) = max
j

|xj − yj | = max
j

max(xj − yj , yj − xj).

In the case of the arbitrary idempotent semifield X, the distance function d
can be considered as a generalized metric that takes values in the interval [1,∞).

1.3. Tropical Puiseux Polynomials and Rational Functions
We consider a tropical Puiseux polynomial of n monomials in one variable x ∈ X,
which is written in the following form:

P (x) =

n⊕
j=1

θjx
pj , x ̸= 0,

where pj ∈ Q are exponents and θj ∈ X, θj ̸= 0, are coefficients for all j = 1, . . . , n.
We note that a polynomial defined in the context of the semifield Rmax,+

(max-plus algebra) is represented in terms of the usual operations as

P (x) = max
1≤j≤n

(pjx+ θj),

and therefore defines a piecewise-linear convex function on R.
Now consider a tropical rational function that is given by

R(x) =
P (x)

Q(x)
, P (x) =

n⊕
j=1

θjx
pj , Q(x) =

l⊕
k=1

σkx
qk , x ̸= 0.

When defined in terms of Rmax,+, the rational function can be written as

R(x) = P (x)−Q(x) = max
1≤j≤n

(pjx+ θj)− max
1≤k≤l

(qkx+ σk),

which is a difference of convex functions. We observe that any arbitrary continuous
function can be represented as the difference of two convex functions [14].
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1.4. Best Approximate Solution of Vector Equations
Given an (m× n)-matrix A and m-vector b, consider the problem to find regular
n-vectors x that solve the one-sided equation

Ax = b. (2)

Since the problem may have no solution, we concentrate on finding a best ap-
proximate solution to the equation in the sense of the metric d. The next statement
is a consequence of the results in [10] (see also [11]).

Theorem 1. Let A be a regular matrix, b a regular vector and ∆ = (A(b−A)−)−b.
Then the following statements hold:

1. The best approximate error for equation (2) is equal to
√
∆;

2. The best approximate solution of the equation is given by

x∗ =
√
∆(b−A)−;

3. If ∆ = 1, there are exact solutions; x∗ = (b−A)− is the maximum solution.

Suppose A and B are given (m× n)- and (m× l)-matrices. The problem is
to find regular x and y of order n and m to satisfy the two-sided equation

Ax = By. (3)

To obtain a best approximate solution to the equation, we apply the alter-
nating algorithm proposed in [12]. The algorithm implements the solution offered
by Theorem 1 to solve a series of one-sided equations obtained from (3) in which
the left and right sides are alternately replaced by constant vectors.

2. Discrete Best Approximation of Functions
We now describe an algebraic technique to solve the data-fitting problems of ap-
proximating an unknown function y = f(x) from finitely many samples (xi, yi) in
the tropical algebra setting. Both tropical polynomials and rational functions are
used as approximants. The problems are handled by transforming them into best
approximation of vector equations obtained from the sample data.

Suppose there are m samples (xi, yi) where xi and yi for i = 1, . . . ,m are
corresponding input and output of an unknown function f : X → X. Consider the
problem of approximating this function by polynomials of n monomials, given by

P (x) =

n⊕
j=1

θjx
pj ,

where we assume for all j = 1, . . . , n that pj ∈ Q are known exponents and
θj ∈ X are unknown coefficients. The problem consists in the determination of the
unknown coefficients that make the equations

P (xi) = yi i = 1, . . . ,m,

hold exactly or approximately by minimizing the deviation between both sides.
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With the matrix-vector notation

X =

 xp1

1 . . . xpn

1
...

...
xp1
m . . . xpn

m

 , y =

 y1,
...
ym

 , θ =

 θ1
...
θn

 ,

we combine the scalar equations into the one-sided vector equation

Xθ = y,

where X and y are a known matrix and vector, and θ is an unknown vector.
We find a best approximate solution of the equation by applying Theorem 1

to obtain the squared error ∆∗ and vector θ∗ = (θ∗1 , . . . , θ
∗
n)

T of coefficients,

∆∗ = (X(y−X)−)−y, θ∗ =
√
∆∗(y

−X)−.

The best approximating polynomial is then given by

P∗(x) = θ∗1x
p1 ⊕ · · · ⊕ θ∗nx

pn .

Consider a rational function as an approximant, which is defined as

R(x) =
P (x)

Q(x)
, P (x) =

n⊕
j=1

θjx
pj , Q(x) =

l⊕
k=1

σkx
qk .

We assume pj , qk ∈ Q to be known exponents and θj , σk ∈ X unknown coef-
ficients for j = 1, . . . , n and k = 1, . . . , l. Given samples xi, yi ∈ X for i = 1, . . . ,m
from input and output of an unknown function, the problem is to find the coeffi-
cients that achieve the best approximation of the equations

R(xi) = yi, i = 1, . . . ,m.

To represent the problem in vector form, we introduce the notation

X =

 xp1

1 . . . xpn

1
...

...
xp1
m . . . xpn

m

 , Y =

 y1 0
. . .

0 ym

 ,

Z =

 xq1
1 . . . xql

1
...

...
xq1
m . . . xql

m

 , θ =

 θ1
...
θn

 , σ =

 σ1

...
σl

 .

The scalar equations can be represented as the two-sided vector equation

Xθ = Y Zσ,

where X, Y and Z are known matrices, and θ and σ are unknown vectors.
We obtain a best approximate solution of the vector equation by using the

alternating algorithm proposed in [12]. The algorithm yields a minimum squared
error ∆∗ and related coefficients θ∗1 , . . . , θ∗n and σ∗

1 , . . . , σ
∗
l that define the function

R∗(x) =
θ∗1x

p1 ⊕ · · · ⊕ θ∗nx
pn

σ∗
1x

q1 ⊕ · · · ⊕ σ∗
l x

ql
.
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We note that in the real problems, the exponents in the approximating poly-
nomials P (x) and Q(x) may be unknown and thus need to be assessed along
with the coefficients of monomials. Below we use a Monte Carlo random sampling
technique to search for optimal values of exponents in the polynomials.

3. Numerical Examples
In this section, we offer examples in terms of the semifield Rmax,+ (max-plus alge-
bra), for which both tropical polynomials and rational functions can be represented
as piecewise linear functions. We assume the polynomials to have a fixed number
of monomials, while the exponents of these monomials are not given in advance.

We apply a two-level solution approach that combines direct random search to
fix exponents with the best approximation by the polynomials with fixed exponents
to evaluate the coefficients of monomials. To reduce the feasible set of exponents
in random search, we consider only polynomials with integer exponents.

We start with a function defined on the interval [0, 2] as follows:

f(x) = x2 − 3x1/3 + 5/2, 0 ≤ x ≤ 2.

The problem is to find an approximate tropical polynomial from a set of
m = 21 samples (xi, yi), where xi = (i−1)/10 and yi = f(xi) for i = 1, . . . ,m. We
consider polynomials with n = 7 monomials where the exponents are produced by
random sampling from the discrete uniform distribution over [−15, 5].

For each sample set of exponents, we evaluate the coefficients that attain the
minimum of the approximation error. After examining 10,000 sample sets of expo-
nents, we arrive at the minimum squared error ∆∗ = 0.0481 and the polynomial,
which in the conventional form is written as

P∗(x) = max(2.5240− 15x, 1.4096− 3x, 0.8736− x, 0.3503,

− 0.4760 + x,−1.6720 + 2x,−3.2853 + 3x).

A graphical illustration of the solution is given in Figure 1.
Now suppose that m = 21 samples (xi, yi) are given from the function

g(x) = 3(x− 1)2 sin(x) + 1/4, 0 ≤ x ≤ 2;

where xi = (i− 1)/10 and yi = g(xi) for i = 1, . . . ,m.
We approximate g(x) by a tropical rational function R(x) = P (x)/Q(x),

where P (x) and Q(x) are polynomials with n = 6 and l = 4 monomials.
After random sampling of 10,000 pairs of sets of exponent and evaluating

corresponding coefficients, we obtain a solution with ∆∗ = 0.0701. Figure 2 shows
the obtained approximating function R∗(x) = P∗(x)−Q∗(x), where

P∗(x) = max(6.9455− 3x, 6.0860− 2x, 4.9978− x, 3.7461,

0.7639 + 2x,−2.6361 + 4x),

Q∗(x) = max(6.6880− 5x, 6.2962− 3x, 5.8009− 2x, 2.4211).
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Figure 1. Approximation of f(x) by a tropical polynomial P∗(x)
with n = 7 terms.
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Figure 2. Approximation of g(x) by a tropical rational function
R∗(x) with n = 6 and l = 4.
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