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Our talk is devoted to the problem of estimating and constructing the
roots of a polynomial in the field multiple fractional power series in zero
characteristic.

More precisely,let k be a ground field of zero–characteristic with alge-
braic closure k. We assume that k = Q(T1, . . . , Tl)[θ] is finitely generated
over the field of rational numbers Q. Here the elements T1, . . . , Tl are alge-
braically independent over Q and the element θ is algebraic over T1, . . . , Tl,
the minimal polynomial for θ over Q(T1, . . . , Tl) is given.



Let f ∈ k[X1, . . . , Xn, Z] be a polynomial of degree degZ,X1,...,Xn
6 d for

an integer d > 2. Consider f ∈ k(X1, . . . , Xn)[Z] as a polynomial in one
variable Z with coefficients in k(X1, . . . , Xn). We assume that the degree
degZ f > 1. Then the roots Z = zα of the polynomial f belong to the field
of multiple formal fractional power series in X1, . . . , Xn, i.e. to the union
by all integers ν1, . . . , νn > 1 of the fields of multiple formal fractional
power series: ⋃

ν1,...,νn>1

k((X
1/ν1
1 ))((X

1/ν2
2 )) . . . ((X1/ν2

n )). (1)

This field is algebraically closed.



The aim of this talk is to attract the atention to the problem of estimat-
ing and constructing the roots zα in the field (1). Of course one needs to
estimate the sizes of coefficients from k of zα in the field (1).

Example. Let f = Z2− 2X1X2−X2
2 −X2

3 . Then one of the roots of f

zα =
√

2X
1/2
1 X

1/2
2 (1 +X2/(2X1) +X2

3/(2X1X2))
1/2 ∈

Q[
√

2][[X
1/2
1 , X

1/2
2 /X

1/2
1 , X3/(X

1/2
1 X

1/2
2 )]].

So in the general case one needs to construct the similar representation for
zα (and estimate all its parameters), i.e., to construct the field kα which is
a finite extension of k and represent zα as a formal power series with coeffi-
cients from kα in the quotients of fractional power monomials inX1, . . . , Xn.



This problem is solved for n = 1 in

[1] Chistov A. L.: “Polynomial complexity of the Newton–Puiseux al-
gorithm”, In: International Symposium on Mathematical Foundations of
Computer Science 1986. Lecture Notes in Computer Science Vol. 233
Springer (1986) p. 247–255.

To our knowledge for the case case n > 1 no estimates have been ob-
tained so far.



Let us proceed to details. The problem for an arbitrary n is reduced
to the case ν1 = . . . = νn = 1. Indeed, if ν1, . . . , νn are the least possible
in the representation of zα then there are at least ν = LCM{ν1, . . . , νn}
pairwise distinct roots zα of the polynomial f . Hence ν 6 d and one can
replace the initial polynomial f by the new one f(Xν

1 , . . . , X
ν
n , Z). For this

new polynomial f the corresponding root zα ∈ k((X1))((X2)) . . . ((Xn)).
So now we get ν1 = . . . = νn = 1 and the degree of this new polynomial f
if bounded by d2.



Further, for all 1 6 j 6 n put X ′j = Xj/(X
µj,1

1 · . . . · Xµj,j−1

j−1 ) for some
integers µj,i > 0 (so X ′1 = X1). Then one can choose integers µj,i such that

zα ∈ k[[X ′1, . . . , X
′
n]], (2)

i.e., zα are formal power series in X ′1, . . . , X
′
n with coefficients from k. This

follows from the construction described in the cited paper [1] applied re-
cursively.

If µj,i are known then one can construct the polynomial f̃ such that
f̃(X ′1, . . . , X

′
n, Z) = f . Assume that we have some upper bounds for inte-

gers µj,i. Then upper bounds for the coefficients of formal power series in
(2) can be obtained applying the results of [2], [3] to the polynomial f̃ .



[2] Chistov A. L.: “An algorithm for factoring polynomials in the ring
of multivariable formal power series in zero–characteristic”, Zap. Nauchn.
Semin. St-Petersburg. Otdel. Mat. Inst. Steklov (POMI) 517 (2022), p.
268–290 (in Russian)

[3] Chistov A. L.: “An algorithm for factoring polynomials in the
ring of multivariable formal power series in zero–characteristic. II”, Zap.
Nauchn. Semin. St-Petersburg. Otdel. Mat. Inst. Steklov (POMI) 529
(2023), p. 261–290 (in Russian).

Last year on the conference PCA’2023 I told about the results of [2]. In
[3] they are strengthened: in brief, the complexity of the algorithms from

[2] is polynomial in d2n
c

for a constant c > 0 and in [3] it is polynomial in
dn (of course, the complexity depends also on other parameters).



Now it remains to estimate the least possible µj,i. This can be done
applying the results of [1] or [3] recursively. The direct application of [1]
or [3] gives double–exponential in n upper bounds for µj,i. But we hope
to improve the estimates from [3] and obtain upper bounds for µj,i which
are subexponential in the number of coefficients of the polynomial f , i.e.,
upper bounds polynomial in dn

O(1)

.



Let us outline how it can be done (still one need check the details).
First of all we assume that the degree degX1,...,Xn

f 6 D for an integer
D > d (this assumption is convenient for the recursion in our construction).
Then we are going to prove applying the result of [1] recursively (and
with some improvements and modifications) that for all j, i the integers
µj,i 6 Dd(n+1−j)c for an absolute constant c > 0.

Now we can describe one step of the recursion.



We can suppose without loss of generality that the polynomial f is sep-
arable and the leading coefficient lcZ f = 1. Put the separable algebra
Λ = k(X1, . . . , Xn)[Z]/(f) and z = Z mod f ∈ Λ. Modifying the con-
struction from [1] with partial derivatives ∂γf/∂Zγ one can find an ele-
ment q ∈ k[X1, . . . , Xn, Z] satisfying the following properties. Denote by
Φ ∈ k(X1, . . . , Xn)[Q] (Q is a variable) the minimal polynomial of the ele-
ment q(z) over k(X1, . . . , Xn). Then degQ Φ = degZ f , lcZ Φ = 1, for every
root zβ of f the order ordXn

q(zβ) > 0, ordXn
q(zα) = 0 and η = q(zα|Xn=0) ∈

k(X1, . . . , Xn−1) is a root of the polynomial Φ(X1, . . . , Xn−1, 0, Q) of mul-
tiplicity 1. Denote by Ψ the minimal polynomial of the element η. So Ψ
divides Φ.



Using the Hensel lemma one can represent

q(zα) = η +
∑

v>1, 06v<degQ Ψ

qv,wη
vXw

n /δ
2w−1 (3)

where all qv,w, δ ∈ k[X1, . . . , Xn−1].
Further one can represent in the algebra Λ

z = 1/a
∑

06v<degQ Φ

zvq
v (4)

where all a, zv ∈ k[X1, . . . , Xn−1].



Note that the degrees with respect to X1, . . . , Xn of the elements q,Φ,Ψ,
δ, a, qv are bounded from above by Ddc for a constant c > 0 (one needs to
check it).

On the other hand, one can represent zα = zα,0 +
∑

w>1 zα,wX
w
n where

all zα,0, zα,w ∈ k((X1))((X2)) . . . ((Xn−1)).
Now µj,i corresponding to zα,0 and η (in place of zα and with n − 1 in

place of n) can be estimated recursively. Finally using (3) and (4) one can
estimate µj,i corresponding to

∑
w>1 zα,wX

w
n and hence to zα.



Notice that there is a minor inacuracy in the statement of Lemma 2.1
of [1]. One of the assertions of this lemma is that µ(i, j) = µ1(i, j)/ν(i) for
some integers µ1(i, j) and ν(i), where ν(i) depends only on i. But recently
we have found that in the general case it is true only if ξi 6= 0 (in the
notation from this lemma).

This inacuracy is not essential for the main result of [1] and its proof.
Only small modifications in the definitions of the elements Qi,j and q in
Lemma 2.2 [1] are required (we are going to give the details in the next
paper).
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