Estimates for roots of a polynomial in the field of multiple formal fractional power series in zero characteristic

Alexander L. Chistov

Let k be a ground field of zero-characteristic with algebraic closure \bar{k}. We assume that k is finitely generated over its primitive subfield. Let $f \in k\left[X_{1}, \ldots, X_{n}, Z\right]$ be a polynomial of degree $\operatorname{deg}_{Z, X_{1}, \ldots, X_{n}} \leqslant d$ for an integer $d \geqslant 2$.

Consider $f \in k\left(X_{1}, \ldots, X_{n}\right)[Z]$ as a polynomial in one variable Z with coefficients in $k\left(X_{1}, \ldots, X_{n}\right)$. Then the roots $Z=z_{\alpha}$ of the polynomial f belong to the field of multiple formal fractional power series in X_{1}, \ldots, X_{n}, i.e. to the union by all integers $\nu_{1}, \ldots, \nu_{n} \geqslant 1$ of the fields of multiple formal fractional power series:

$$
\begin{equation*}
\bigcup_{, \ldots, \nu_{n} \geqslant 1} \bar{k}\left(\left(X_{1}^{1 / \nu_{1}}\right)\right)\left(\left(X_{2}^{1 / \nu_{2}}\right)\right) \ldots\left(\left(X_{n}^{1 / \nu_{2}}\right)\right) \tag{1}
\end{equation*}
$$

This field is algebraically closed. The aim of this talk is to attract the atention to the problem of estimating and constructing the roots z_{α} in the field (1) (of course one needs to estimate the sizes of coefficients from \bar{k} of z_{α} in the field (1)). This problem is solved for $n=1$ in [1]. To our knowledge for the case case $n>1$ no estimates have been obtained so far.

The problem for an arbitrary n is reduced to the case $\nu_{1}=\ldots=\nu_{n}=1$. Hence now $z_{\alpha} \in \bar{k}\left(\left(X_{1}\right)\right)\left(\left(X_{2}\right)\right) \ldots\left(\left(X_{n}\right)\right)$. Further, for all $1 \leqslant j \leqslant n$ put $X_{j}^{\prime}=$ $X_{j} /\left(X_{1}^{\mu_{j, 1}} \cdot \ldots \cdot X_{j-1}^{\mu_{j, j-1}}\right)$ for some integers $\mu_{j, i} \geqslant 0$ (so $\left.X_{1}^{\prime}=X_{1}\right)$. Then one can choose integers $\mu_{j, i}$ such that

$$
\begin{equation*}
z_{\alpha} \in \bar{k}\left[\left[X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right]\right], \tag{2}
\end{equation*}
$$

i.e., z_{α} are formal power series in $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ with coefficients from \bar{k}. Good upper bounds for the coefficients of formal power series in (2) can be obtained using the results of [2], [3].

Now it remains to estimate the least possible $\mu_{j, i}$. This can be done applying the results of [1] or [3] recursively. The direct application of [1] or [3] gives doubleexponential in n upper bounds for $\mu_{j, i}$. But we hope to improve the estimates from
[3] and obtain upper bounds for $\mu_{j, i}$ which are subexponential in the number of coefficients of the polynomial f, i.e., upper bounds polynomial in $d^{n^{O(1)}}$.

References

[1] A.L. Chistov, Polynomial complexity of the Newton-Puiseux algorithm, In: International Symposium on Mathematical Foundations of Computer Science 1986. Lecture Notes in Computer Science Vol. 233 Springer (1986) p. 247-255.
[2] A.L. Chistov An algorithm for factoring polynomials in the ring of multivariable formal power series in zero-characteristic, Zap. Nauchn. Semin. St-Petersburg. Otdel. Mat. Inst. Steklov (POMI) 517 (2022), p. 268-290 (in Russian).
[3] A.L. Chistov An algorithm for factoring polynomials in the ring of multivariable formal power series in zero-characteristic. II, Zap. Nauchn. Semin. St-Petersburg. Otdel. Mat. Inst. Steklov (POMI) 529 (2023), p. 261-290 (in Russian).

Alexander L. Chistov
St. Petersburg Department of Steklov Mathematical Institute of the Academy of Sciences of Russia
Fontanka 27, St. Petersburg 191023, Russia
e-mail: alch@pdmi.ras.ru

