

Binomial Coefficients as Functions of their Denominator; Another Primality Criteria for Natural Integers

Nikita Gogin, Vladislav Shubin

April 16, 2024

Gogin N., Shubin V. Binomial Coefficients as Functions of their Denominator

Binomial coefficients have surprisingly great expressive power ... Yu. V. Matiyasevich [1]

In [2] we proved the identity

$$\binom{n}{k} = (-2)^n \sum_{i=0}^n \binom{\frac{i-1}{2}}{n} K_i^{(n)}(k),$$
(1)

for all integer $k, 0 \le k \le n$, where $K_i^{(n)}(k)$ are the Krawtchouk polynomials of order *n*. [3]

・ 同 ト ・ ヨ ト ・ ヨ ト

÷.

Let f(x) be a real function. The following formula for interpolation polynomial is valid. [4]

$$\mathcal{B}_n(f;x) = \sum_{m=0}^n \binom{x}{m} \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} f(k).$$

Let us define $\langle \binom{n}{x} \rangle$ as a polynomial $\mathcal{B}_n \binom{n}{x}$; x for fixed integer n.

ヘロト ヘアト ヘビト ヘビト

1

Motivation

Criteria References

Main Theorem

Primality Criteria

An odd positive integer *n* is odd prime iff denominator of the rational number $\langle \binom{n}{n-1} \rangle$ is n^{n-1} , where $\langle \binom{n}{x} \rangle$ is interpolation polynomial on *x* for the set of binomial coefficients $\{\binom{n}{r}\}_{r=0,...,n}$.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

ъ

Motivation Criteria

References

Examples

Primality Criteria

$$\left\langle \begin{pmatrix} 3\\1/3 \end{pmatrix} \right\rangle = \frac{17}{9}$$
$$\left\langle \begin{pmatrix} 5\\1/5 \end{pmatrix} \right\rangle = \frac{769}{625}$$

"Counter" example

$$\left\langle \begin{pmatrix} 2\\ 1/2 \end{pmatrix} \right\rangle = \frac{7}{4}$$

イロン イロン イヨン イヨン

ъ

Motivation Criteria References

Examples 2

Primality Criteria

$$\left\langle \begin{pmatrix} 7\\1/7 \end{pmatrix} \right\rangle = \frac{233225}{117649} = \frac{491 \times 19 \times 5^2}{7^6} \\ \left\langle \begin{pmatrix} 11\\1/11 \end{pmatrix} \right\rangle = \frac{115853436093}{25937424601} = \frac{223224347 \times 173 \times 3}{11^{10}}$$

Composite numbers

$$\begin{pmatrix} 6\\1/6 \end{pmatrix} = \frac{2952251}{1679616} = \frac{967 \times 71 \times 43}{6^8} \\ \begin{pmatrix} 10\\1/10 \end{pmatrix} = \frac{47755338385111}{160000000000} = \frac{6822191197873 \times 7}{2^{16} \times 5^{12}}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Motivation Criteria References

Additional examples

It is easy to prove that for any $x \in \mathbb{R}$

$$\left\langle \binom{n}{x} \right\rangle = \left\langle \binom{n}{n-x} \right\rangle.$$

If x = -1 then

$$\left\langle \begin{pmatrix} n \\ -1 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} n \\ n+1 \end{pmatrix} \right\rangle = (-1)^{\left[\frac{n}{2}\right] \mod 4} \times \begin{pmatrix} n \\ [n/2] \end{pmatrix}.$$

Sperner's theorem says that $\binom{n}{\lfloor n/2 \rfloor}$ is the maximal number of subsets of an *n*-set such that no one contains another (A001405 in OEIS).

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Criteria References

Additional examples (cellular automaton)

If
$$x = J_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, then $\left\langle \begin{pmatrix} 2 \\ J_2^k \end{pmatrix} \right\rangle = -\left(\begin{pmatrix} a_k J_2 + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right)$,
where $a_k, k > 1$ is a sequence A267816 in OEIS with $a_1 = 1$:
 $a_1 = 1 = (1)_2$ $a_2 = 3 = (11)_2$ $a_3 = 23 = (10111)_2$
 $a_4 = 111 = (1101111)_2$ $a_5 = 479 = (111011111)_2 \dots$
These integers a_k are exactly the *decimal representation of the*
n-th iteration of the "Rule 221" elementary cellular automaton
starting with a single ON (black) cell.

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

At the present moment we consider the Neville's algorithm as the most convenient tool for evaluation of the Denominator $\left\langle \binom{n}{n-1} \right\rangle$. The complexity of this algorithm can be estimated as $O(n^2)$ (See [5]).

・ 同 ト ・ ヨ ト ・ ヨ ト

References I

- Y. V. Matiyasevich, "The Riemann hypothesis as the parity of special binomial coefficients", *Chebyshevskii sbornik.*, vol. 19, no. 3, pp. 46–60, 2018.
- [2] N. Gogin and M. Hirvensalo, "On the moments of squared binomial coefficients", ser. Polynomial Computer Algebra, Euler International Mathematical Institute, 2020. [Online]. Available: https://pca-pdmi.ru/2020/files/10/ GoHi2020ExtAbstract.pdf.
- [3] F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*. North-Holland, 1977.
- [4] S. Beresin and N. P. Jhidkov, *Computing Methods*. New York: Pergamon Press, 1973.

ヘロト ヘワト ヘビト ヘビト

[5] E. W. Weisstein, Neville's algorithm, [Online]. Available: https://mathworld.wolfram.com/ NevillesAlgorithm.html.

イロト イポト イヨト イヨト

æ