# Binomial Coefficients as Functions of their Denominator; <br> Another Primality Criteria for Natural Integers 

Nikita Gogin, Vladislav Shubin

April 16, 2024

## Motivation

## Binomial coefficients have surprisingly great expressive power ... <br> Yu. V. Matiyasevich [1]

In [2] we proved the identity

$$
\begin{equation*}
\binom{n}{k}=(-2)^{n} \sum_{i=0}^{n}\binom{\frac{i-1}{2}}{n} K_{i}^{(n)}(k) \tag{1}
\end{equation*}
$$

for all integer $k, 0 \leq k \leq n$, where $K_{i}^{(n)}(k)$ are the Krawtchouk polynomials of order $n$. [3]

## Interpolation

Let $f(x)$ be a real function. The following formula for interpolation polynomial is valid. [4]

$$
\mathcal{B}_{n}(f ; x)=\sum_{m=0}^{n}\binom{x}{m} \sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} f(k) .
$$

Let us define $\left\langle\binom{ n}{x}\right\rangle$ as a polynomial $\mathcal{B}_{n}\left(\binom{n}{x} ; x\right)$ for fixed integer $n$.

## Main Theorem

## Primality Criteria

An odd positive integer $n$ is odd prime iff denominator of the rational number $\left\langle\binom{ n}{n^{-1}}\right\rangle$ is $n^{n-1}$, where $\left\langle\binom{ n}{x}\right\rangle$ is interpolation polynomial on $x$ for the set of binomial coefficients $\left\{\binom{n}{r}\right\}_{r=0, \ldots, n}$.

## Examples

## Primality Criteria

$$
\begin{aligned}
& \left\langle\binom{ 3}{1 / 3}\right\rangle=\frac{17}{9} \\
& \left\langle\binom{ 5}{1 / 5}\right\rangle=\frac{769}{625}
\end{aligned}
$$

## "Counter" example

$$
\left\langle\binom{ 2}{1 / 2}\right\rangle=\frac{7}{4}
$$

## Examples 2

## Primality Criteria

$$
\begin{gathered}
\left\langle\binom{ 7}{1 / 7}\right\rangle=\frac{233225}{117649}=\frac{491 \times 19 \times 5^{2}}{7^{6}} \\
\left\langle\binom{ 11}{1 / 11}\right\rangle=\frac{115853436093}{25937424601}=\frac{223224347 \times 173 \times 3}{11^{10}}
\end{gathered}
$$

Composite numbers

$$
\begin{gathered}
\left\langle\binom{ 6}{1 / 6}\right\rangle=\frac{2952251}{1679616}=\frac{967 \times 71 \times 43}{6^{8}} \\
\left\langle\binom{ 10}{1 / 10}\right\rangle=\frac{47755338385111}{16000000000000}=\frac{6822191197873 \times 7}{2^{16} \times 5^{12}}
\end{gathered}
$$

## Additional examples

It is easy to prove that for any $x \in \mathbb{R}$

$$
\left\langle\binom{ n}{x}\right\rangle=\left\langle\binom{ n}{n-x}\right\rangle .
$$

If $x=-1$ then

$$
\left\langle\binom{ n}{-1}\right\rangle=\left\langle\binom{ n}{n+1}\right\rangle=(-1)^{\left[\frac{n}{2}\right]} \bmod 4 \times\binom{ n}{[n / 2]} .
$$

Sperner's theorem says that $\binom{n}{[n / 2]}$ is the maximal number of subsets of an $n$-set such that no one contains another (A001405 in OEIS).

## Additional examples (cellular automaton)

If $x=J_{2}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then $\left\langle\binom{ 2}{J_{2}^{k}}\right\rangle=-\left(\left(a_{k} J_{2}+\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)\right.$,
where $a_{k}, k>1$ is a sequence A267816 in OEIS with $a_{1}=1$ :
$a_{1}=1=(1)_{2} \quad a_{2}=3=(11)_{2} \quad a_{3}=23=(10111)_{2}$
$a_{4}=111=(1101111)_{2} \quad a_{5}=479=(111011111)_{2} \ldots$
These integers $a_{k}$ are exactly the decimal representation of the $n$-th iteration of the "Rule 221" elementary cellular automaton starting with a single ON (black) cell.

## Complexity

At the present moment we consider the Neville's algorithm as the most convenient tool for evaluation of the Denominator $\left\langle\binom{ n}{n^{-1}}\right\rangle$. The complexity of this algorithm can be estimated as $\mathrm{O}\left(n^{2}\right)$ (See [5]).

## References |

[1] Y. V. Matiyasevich, "The Riemann hypothesis as the parity of special binomial coefficients", Chebyshevskii sbornik., vol. 19, no. 3, pp. 46-60, 2018.
[2] N. Gogin and M. Hirvensalo, "On the moments of squared binomial coefficients",, ser. Polynomial Computer Algebra, Euler International Mathematical Institute, 2020. [Online]. Available: https://pca-pdmi.ru/2020/files/10/ GoHi2020ExtAbstract.pdf.
[3] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. North-Holland, 1977.
[4] S. Beresin and N. P. Jhidkov, Computing Methods. New York: Pergamon Press, 1973.

## References II

[5] E. W. Weisstein, Neville's algorithm, [Online]. Available: https://mathworld.wolfram.com/
NevillesAlgorithm.html.

