Binomial Coefficients as Functions of their Denominator; Another Primality Criteria for Natural Integers

Nikita Gogin and Vladislav Shubin

Abstract

We prove that an odd positive integer n is prime iff denominator of the rational number $\left\langle\binom{ n}{n^{-1}}\right\rangle$ is n^{n-1}, where $\left\langle\binom{ n}{x}\right\rangle=\mathcal{B}_{n}(x)$ is interpolation polynomial on x for the set of binomial coefficients $\left\{\binom{n}{r}\right\}_{r=0,1, \ldots . n}$ and $x \in$ $[0, n] \subset \mathbb{R}$.

Keywords. Prime numbers, Binomial coefficients, Interpolation polynomial, Newton interpolation formula, Krawtchouk polynomials.

1. Introduction and Preliminaries

Binomial coefficients have
surprisingly great expressive power ...
Yu. V. Matiyasevich [2]
In this paper we use generally accepted definition of the (generalized) binomial coefficients as polynomials on the (real) variable x :

$$
\begin{equation*}
\binom{x}{m}=\frac{x(x-1) \ldots(x-m+1)}{m!} \tag{1}
\end{equation*}
$$

where m is a nonnegative integer, $\binom{x}{0}=1$. [3]
However in joint publication [4], among other things, we proved that the identity

$$
\begin{equation*}
\binom{n}{k}=(-2)^{n} \sum_{i=0}^{n}\binom{\frac{i-1}{2}}{n} K_{i}^{(n)}(k) \tag{2}
\end{equation*}
$$

is valid for all integer $k, 0 \leq k \leq n$, where $K_{i}^{(n)}(k)$ are the Krawtchouk polynomials of order n. [3]

The right side of this equality is a polynomial on k and this allows us to accept it as the definition of the symbol $\left\langle\binom{ n}{x}\right\rangle$ where x stands for k and can be treated
now as an element of any (not necessarily commutative) algebra over a field of zero characteristic and n is a (fixed) nonnegative integer. In particular if $x \in[0, n] \subset \mathbb{R}$ the polynomial $\mathcal{B}_{n}(x)=\left\langle\binom{ n}{x}\right\rangle$ is of course the ordinal interpolation polynomial for the set of binomial coefficients $\left\{\binom{n}{r}\right\}_{r=0,1, \ldots . n}$. expanded by the (orthogonal) basis of Krawtchouk polynomials. Since $\mathcal{B}_{n}(x)$ is interpolation polynomial, we can use its notation in any form convenient for our purposes. Here we take the explicit Newton interpolation formula for equidistant nodes with a step $h=1$ [5]:

Let $f(k), k=0,1, \ldots, n$ be a tuple of values of a real function f. Then the following formula for interpolation polynomial $P_{n}(f ; x)$ is s valid:

$$
\begin{equation*}
P_{n}(f ; x)=\sum_{m=0}^{n}\binom{x}{m} \sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} f(k) \tag{3}
\end{equation*}
$$

where $x \in[0, n] \subset \mathbb{R}$.

2. Some Auxiliary Formulas

Applying formula (3) to $x=n^{-1}$ and $f(k)=\binom{n}{k}$ we get the equality

$$
\begin{equation*}
\mathcal{B}_{n}\left(n^{-1}\right)=\left\langle\binom{ n}{n^{-1}}\right\rangle=\sum_{m=0}^{n}\binom{n^{-1}}{m} \sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}\binom{n}{k} . \tag{4}
\end{equation*}
$$

Let now $A^{(n)}$ and $B^{(n)}$ be two auxiliary arrays :

$$
A^{(n)}=\left\{a_{m}\right\}_{0 \leq m \leq n}, \text { with } a_{0}=1
$$

and for $1 \leq m \leq n$

$$
\begin{equation*}
a_{m}=\binom{n^{-1}}{m}=\frac{n^{-1}\left(n^{-1}-1\right)\left(n^{-1}-2\right) \ldots\left(n^{-1}-(m-1)\right)}{m!}=\frac{\lambda_{m}}{n^{m}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{m}=\frac{\prod_{r=0}^{m-1}(1-n r)}{\prod_{s=1}^{m} s} \tag{6}
\end{equation*}
$$

and

$$
\begin{gather*}
B^{(n)}=\left\{b_{m}\right\}_{0 \leq m \leq n} \text { with } b_{0}=1 \text { and for } 1 \leq m \leq n \\
b_{m}=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}\binom{n}{k}=\#_{t^{m}}\left[(1-t)^{m}(1+t)^{(n+m)-m}\right]=K_{m}^{(n+m)}(m) . \tag{7}
\end{gather*}
$$

In particular if $m=n$ and n is odd then $b_{n}=0$ [6]. Formula (4) evidently can be written as a scalar product:

$$
\begin{equation*}
\mathcal{B}_{n}\left(n^{-1}\right)=\left\langle A^{(n)}, B^{(n)}\right\rangle \tag{8}
\end{equation*}
$$

From the equalities (4),(7) and (8) we get the "duality" formula:

$$
\begin{equation*}
\binom{n}{n^{-1}}=\sum_{m=0}^{n}\binom{n^{-1}}{m} K_{m}^{(n+m)}(m) \tag{9}
\end{equation*}
$$

Lemma 1. 1. (a) If $1<s \leq m$ is an index of the denominator of formula (6) such that $\operatorname{gcd}(\mathrm{s}, \mathrm{n})=1$ then there exists a unique index $r, 0 \leq r \leq m-1$ in its numerator such that $s \mid(1-n r)$;
(b) In particular if $n=p$ is an odd prime integer then all numbers λ_{m} are integers with $\operatorname{gcd}\left(\lambda_{m}, n=p\right)=1$ for all $m<n=p$.
2. (a) $a_{n}=\frac{a_{n-1}(1-n(n-1))}{n}$ for any n;
(b) in particular if $n=p$ then $\lambda_{p}=1-p(p-1) \equiv 1 \bmod (p)$;
3. (a) $A^{(p)}=\left\{\left\{a_{m}=\frac{\lambda_{m}}{p^{m}}\right\}_{0 \leq m \leq(p-1)}, a_{p}=\frac{\lambda_{p-1}(1-p(p-1))}{p^{p+1}}\right\}$;
(b) Denominators of $A^{(p)}$ are

$$
\left\{\begin{array}{cc}
p^{m} & \text { for } 0 \leq m \leq p-1 \tag{10}\\
p^{p+1} & \text { for } m=p
\end{array}\right. \text {. }
$$

Proof. 1. $s \mid(1-n r) \Longleftrightarrow r=n^{-1}(\bmod s)$ is unique because $\operatorname{gcd}(s, n)=1$;
The special case $n=p$ is obvious from formula (5);
2. (a) is clear from formula (5);
(b) is evident;
3. is obvious from 2. (a) and (b).

Lemma 2. If $n=p$ is an odd prime integer then

$$
\begin{equation*}
b_{p}=0 ; b_{m} \equiv(-1)^{m}(\bmod p) \text { for } 0 \leq m \leq p-1 \tag{11}
\end{equation*}
$$

Proof. For the first equality see formula (7) above.
For the second congruence we get from formula (7):

$$
\begin{equation*}
b_{m}=(-1)^{m} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\binom{p}{k} . \tag{12}
\end{equation*}
$$

But $\binom{p}{k}(\bmod p) \equiv 0$ excepting $k=0$ and $k=p$ when it is $\equiv 1$. Thus here in (12) we need only $k=0$ and in this first case $b_{m} \equiv(-1)^{m}(\bmod p)$ for all $0 \leq m \leq p-1$.

Theorem 1. An odd natural number n is prime iff.

$$
\begin{equation*}
\text { Denominator }\left\langle\binom{ n}{n^{-1}}\right\rangle=\text { Denominator } \sum_{m=0}^{n}\binom{n^{-1}}{m} K_{m}^{(n+m)}(m)=n^{n-1} \tag{13}
\end{equation*}
$$

Proof. 1. If $n=p$ (prime) then by f. (8) we have $\left\langle\binom{ p}{p^{-1}}\right\rangle=\left\langle A^{(p)} \mid B^{(p)}\right\rangle$ and recollecting item (3) of Lemma 1 and formula (10) we get $\left\langle\binom{ p}{p^{-1}}\right\rangle=$ $\sum_{m=0}^{p-1} a_{m} b_{m}+a_{p} b_{p}=\sum_{m=0}^{p-1} \frac{\lambda_{m}}{p^{m}} b_{m}+\frac{\lambda_{p}}{p^{p+1}} b_{p}=\frac{Q}{p^{p+1}}$ where $Q-\lambda_{p} b_{p}=$ $Q-\lambda_{p} \cdot 0=Q=p^{2}\left(\lambda_{0} p^{p-1} b_{0}+\ldots+\lambda_{p-1} b_{p-1}\right)$ hence $\left\langle\binom{ p}{p^{-1}}\right\rangle=\frac{Q}{p^{p-1}}$. This fraction is evidently irreducible because $\lambda_{p-1} \cdot b_{p-1} \equiv 1(\bmod p)$ and so Denominator $\left\langle\binom{ p}{p^{-1}}\right\rangle=p^{p-1}$
2. Otherwise, if n is not prime and index $s, 1<s<n$ is such that $\operatorname{gcd}(n, s)>1$ then n is not inversible modulo s (compare the proof of Lemma 1, item 1) and this s becomes an 'extramultiplier' (besides n^{n-1}) in the denominator of $\left\langle\binom{ n}{n^{-1}}\right\rangle$ and hence this denominator cannot be equal to n^{n-1}.

3. Concuding Remark

At the present moment we consider the Neville's algorithm as the most convenient tool for evaluation of the Denominator $\left\langle\binom{ n}{n^{-1}}\right\rangle$ (See theorem 1). The complexity of this algorithm can be estimated as $\mathrm{O}\left(n^{2}\right)$ [7].

References

[1] Yu. V. Matiyasevich. 'A class of primality criteria formulated in terms of divisibility of binomial coefficicients', Zap. Nauchn. Sem. LOMI, 1977, Volume 67, 167-183.
[2] Yu. V. Matiyasevich. 'The Rieman hypothesis as the parity of special binomial coefficients', Chebyshevskii sbornik. vol. 19. no 3, 2018. pp. 46-60.
[3] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. NorthHolland (1977).
[4] N.D. Gogin, Mika Hirvensalo. 'On the moments of squared binomial coefficients', 2020, https://pca-pdmi.ru/2020/files/10/GoHi2020ExtAbstract.pdf
[5] S. Beresin and N. P. Jhidkov. 'Computing Methods', Pergamon Press, New York 1973.
[6] Nikita Gogin, Mika Hirvensalo. 'Recurrent Construction of MacWilliams and Chebyshev matrices', University of Turku, January 2012, https://www.researchgate.net/ publication/31597175
[7] Weisstein, Eric W. 'Neville's Algorithm. From MathWorld-A Wolfram Web Resource. ', https://mathworld.wolfram.com/NevillesAlgorithm.html

```
Nikita Gogin
e-mail: ngiri@list.ru
Vladislav Shubin
e-mail: v.v.choubine@gmail.com
```

Binomial Coefficients as Functions of their Denominator; Another Primality Criteria for Natural Integer $\bar{\Im}$

Departament of Mathematics Stockholm State University
Stockholm, Sweden

