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Abstract. A calculus [1] has been developed which allows one to calculate ana-
lytically asymptotic expansions of solutions to equations which are polynomi-
als on variables and their derivatives, as well as to systems of such equations.
This calculus is applied to equations of any type: algebraic [2, 3], ordinary
differential [4] and partial differential [5], as well as to their systems. The
calculus is based on algorithms of power geometry: (a) selection of truncated
equations consisting of all leading terms, as well as (b) power transformations,
(c) logarithmic and (d) normalizing coordinate transformations. The required
software for this calculus has already been developed.

1. Introduction

For a single equation, the sequence of calculations is as follows:

I. First, the truncated equations are selected and the regions where they are
first approximations of the original equation are specified.

II. Each truncated equation is then simplified using power and logarithmic coor-
dinate transformations, possibly repeatedly, to an equation that has a simple
solution.

III. This is augmented to the solution of the truncated equation.
IV. If its perturbation in the full equation has a linear part, we obtain the solution

of the original equation by the normalizing transformation.
V. If this perturbation does not have a linear part, we repeat this process for it,

i.e., we again separate the truncated equations and simplify them until we
come to situation IV, i.e., to a perturbation with a linear part, for which we
find a solution.

The methods of applying this calculus to equations of different types are
described below.

The article [1] outlines the objects and sequences of calculus for:
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1. One algebraic equation.
2. One ordinary differential equation (ODE) of order n.
3. An autonomous system of n ODEs.
4. One partial differential equation.

A brief review of applications is also given there.
Here we give algorithms of nonlinear analysis for cases of one equation and

discuss levels of power geometry.

2. Levels of Power Geometry
Everything that has been told in [1] refers to the zero level of power geometry, for
there it has been «sealed» that

ord y′ = ord y − 1. (1)

But this is not always the situation. By rejecting this property, we get a wider set
of solutions. Let’s discuss this in more detail.

In the algebraic equation

f(X)
def
=

∑
aQX

Q = 0,

with X ∈ Rn or Cn to each monomial aQX
Q can be assigned a point Q̌ =

{Q, ln |aQ||} in Rn+1. Their set forms the supersupport Š(f), and its convex hull
Ȟ(f) is the Adamar polyhedron [6].

We build truncated equations on its faces. They are simpler than the trun-
cated equations corresponding to the faces of Newton’s polyhedron, and allow us
to study cases where Newton’s polyhedron fails.

For a single ODE, one can search for solutions that have ord y − ord y′ ̸= 1
by introducing a new coordinate for the order of the derivative y′. This was done
in [7] and allowed us to obtain solutions in the form of power expansions whose
coefficients are trigonometric or elliptic functions.

We can consider solutions where ord y(k) − ord y(k+1) is arbitrary, or several
such differences are arbitrary, and obtain new types of solutions. For details see
[8, 9, 10].

A similar thing could be done with partial differential equations, but it has
not been done yet.
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