Some geometric properties of shifted Young diagrams of maximum dimensions

Vasilii Duzhin and Egor Smirnov-Maltsev

The problem of finding Young diagrams of straight shape with large dimensions, i. e. those with a large number of Young tableaux, was previously studied in $[1,2]$. This research is a continuation of works $[3,4]$ in which a similar problem was investigated for strict Young diagrams. The approaches used in the above works have in common that the original diagram λ_{n} is transformed into a new one λ_{n}^{\prime} of the same size n such that the dimension of λ_{n}^{\prime} is greater than the dimension of λ_{n}. Here we present two new methods for finding strict Young diagrams of larger dimensions which are based on the same idea.

Consider a strict Young diagram $\lambda=\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ of size n. The first method is to move a box from the $(i-1)$ th column to the i th one. Thus, the resulting diagram of size n will be $\lambda^{\prime}=\left(x_{1}, \ldots, x_{i-2}, x_{i-1}-1, x_{i}+1, x_{i+1}, \ldots, x_{s}\right)$. We prove that the dimension of λ^{\prime} is greater than the dimension of λ if the following condition is met:

$$
\begin{equation*}
x_{i-1}-x_{i} \geq \frac{3+\sqrt{9+8 x_{i}}}{2} \tag{1}
\end{equation*}
$$

Note that in the case when inequality (1) is not satisfied, the above transformation can lead to both a decrease in dimension and an increase in it.

Consider a strict Young diagram $\lambda=\left(x_{1}, x_{2}, \ldots, x_{s}\right)$. The tail of length t is the last t columns of λ. Tail size \tilde{n} is the number of boxes in these t columns. The second method is to change a tail of length t of size \tilde{n} to a tail of length $t+1$ of the same size. The resulting Young diagram is $\lambda^{\prime}=\left(x_{1}, \ldots, x_{s-t}, y_{1}, \ldots, y_{t+1}\right)$.

During the research, it was hypothesized that the dimension of the diagram λ is less than the dimension of the diagram λ^{\prime} if 2 conditions are met:

1. The dimension of a diagram $\lambda_{t}=\left(x_{s-t+1}, x_{s-t+2}, \ldots, x_{s}\right)$ is not greater than the dimension of a diagram $\lambda_{t}^{\prime}=\left(y_{1}, y_{2}, \ldots, y_{t+1}\right)$.
2. There is no $t_{1}<t$ such that there is a diagram $\lambda_{t_{1}}^{\prime}=\left(\tilde{y}_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{t_{1}+1}\right)$ whose dimension is not less than the dimension of the diagram

$$
\lambda_{t_{1}}=\left(x_{s-t_{1}+1}, x_{s-t_{1}+2}, \ldots, x_{s}\right)
$$

This conjecture was proven for t equal to 1 and 2 . However, already for t equal to 7 a counterexample to it was found. This work was supported by grant RSF 22-21-00669.

References

[1] Egor Smirnov-Maltsev. On a property of Young diagrams of maximum dimensions. International Conference "Polynomial Computer Algebra 2023", Saint-Petersburg, 1722 April 2023, Ed. by N. N. Vassiliev, VVM Publishing, Saint-Petersburg, 2023, p. 118-121.
[2] Vasilii Duzhin, Egor Smirnov-Maltsev. On Young diagrams of maximum dimension. Communications in Mathematics, 2023, vol. 31, no. 3. [15 pages] doi:10.46298/cm. 12641
[3] V. S. Duzhin, N. N. Vasilyev. Asymptotic Behavior of Normalized Dimensions of Standard and Strict Young Diagrams - Growth and Oscillations. Journal of Knot Theory and Its Ramifications, 2016, vol. 25, no. 12. [16 pages] doi:10.1142/S0218216516420025
[4] N. N. Vasiliev, V. S. Duzhin. A Study of the Growth of the Maximum and Typical Normalized Dimensions of Strict Young Diagrams. Journal of Mathematical Sciences, 2016, vol. 216, no. 1, pp 53-64. doi:10.1007/s10958-016-2887-x

Vasilii Duzhin
Saint Petersburg Electrotechnical University
ul. Professora Popova 5, 197376 St. Petersburg, Russian Federation
e-mail: vsduzhin@etu.ru
Egor Smirnov-Maltsev
Department of Applied Informatics and Probability Theory
Peoples' Friendship University of Russia
Moscow, Russia
e-mail: 1032212272@rudn.ru

