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Tarski’s Elimination Theorem

T h e o r e m. Any formula φ(x̄) of signature {=, <,+, ·, 0, 1} is
equivalent in R to a quantifier-free formula φ∗(x̄).

Equivalently, the projection of any semialgebraic set S ⊆ Rn+1

along any axis is a semialgebraic subset of Rn.
A subset of Rn is semialgebraic, if it is a finite union of solution
sets of systems of polynomial equations P(x̄) = 0 and inequalities
Q(x̄) > 0 with P,Q ∈ Z[x̄ ]

There are many extensions and variations on the Tarski theorem.
In this talk, we briefly discuss some earlier and some newer
variations related to computable model theory, foundations of
symbolic computations, and numeric computations.
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Variations on Tarski’s Elimination

Tarski’s theorem strongly influenced different areas of mathematics
including:
1) Axiomatizing and deciding geometry (Tarski, Szmielew,
Givant... ),
2) Model theory (Robinson, Ax, Macintyre, Ziegler, van den
Dries,...),
3) Foundations of PDE-theory (Hörmander, Shilov, Gorin,...),
4) Decidability in fragments of analysis,
5) Computer algebra and computational complexity (Cohen,
Collins, Renegar, Grigoriev, Vorobjov, Chistov,...)

Topics of our talk are related to 5) but we mainly consider large
complexity classes like general (Turing) computability or primitive
recursive (PR) computability. In particular, we are interesting in
extending the integer (equivalently, rational) polynomials to larger
fields of coefficients which still admit the computability of function
φ 7→ φ∗ in the Tarski theorem and in spectral decomposition.
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Algorithmic problems in field theory

Based on the notion of a computable structure, the computability
issues in algebra and model theory were thoroughly investigated. In
particular, a rich and useful theory of computable fields was
developed.

For instance, Rabin has shown that the algebraic closure of a
computable field is computably presentable, and Ershov and
Madison have shown that the real algebraic closure of a
computable ordered field is computably presentable.

Since the ordered field Q of rationals is computably presentable,
the field Calg = (Calg; +,×, 0, 1) of complex algebraic numbers
and the ordered field Ralg = (Ralg;≤,+,×, 0, 1) of algebraic reals
are computably presentable.
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Constructive structures

D e f i n i t i o n. A structure B = (B;σ) of a finite signature σ is
called constructivizable iff there is a numbering β of B such that
all signature predicates and functions, and also the equality
predicate, are β-computable. Such a numbering β is called a
constructivization of B, and the pair (B, β) is called a constructive
structure.

Obviously, (B, β) is a constructive structure iff given a
quantifier-free σ-formula ϕ(v1, . . . , vk) with free variables among
v1, . . . , vk and given n1, . . . , nk ∈ N, one can compute the
truth-value ϕB(β(n1), . . . , β(nk)) of ϕ in B on the elements
β(n1), . . . , β(nk) ∈ B.
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Strongly constructive structures

D e f i n i t i o n. A structure B = (B;σ) of a finite signature σ is
called strongly constructivizable iff there is a numbering β of B
such that, given a first-order σ-formula ϕ(v1, . . . , vk) with free
variables among v1, . . . , vk and given n1, . . . , nk ∈ N, one can
compute the truth-value ϕB(β(n1), . . . , β(nk)) of ϕ in B on the
elements β(n1), . . . , β(nk) ∈ B. Such a numbering β is called a
strong constructivization of B, and the pair (B, β) is called a
strongly constructive structure.

Note that we used above “Russian” terminology; the equivalent
“American” notions for “constructivizable” and “constructive” are
“computably presentable” and “computable”, resp.
The notion of a strongly constructive structure is equivalent to the
notion of a decidable structure in the western literature.
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Presentaion complexity of structures

In applications one of course has to pay attention to the
complexity of implemented algorithms and of structure
presentations. The complexity of structure presentations was first
studied by Nerode, Cenzer and Remmel. In particular, the notion
of a polynomial-time (p-time) structure was introduced. To our
knowledge, the complexity issues for presentations of fields were
not studied in computability theory so far.

At the same time, there exists a well-developed theory of symbolic
computations (closely related to computer algebra) which
investigates the complexity of algorithms in fields, of concrete
presentations of fields and rings, and aims to implement these in
computer systems.

Although the mentioned theories are clearly related, they developed
independently and there are essentially no references between
them. We promote the theory of feasible presentations of
structures as a foundation for symbolic computations.
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Computable reals

A real is computable if it is the limit of a sequence of rationals
{qi} such that |qi − qi+1| < 2−i . The field Rc of computable reals
is countable, real closed, and not computably presentable. But, in
a sense, it is “partially computably presentable”.

Let κ — be a constructivisation of Q and {φn}be the standard
computable numbering of all computable partial functions on N.
Define a partial function ρ from N onto Rc : ρ(n) = x iff φn is
total and {κφn(i)}i is a fast Cauchy sequence converging to x .

A numbering µ is reducible to a (partial) numbering ν (µ ≤ ν), if
µ = ν ◦ f for some computable function f on N.
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Constructive fields of reals

P r o p o s i t i o n 1. Let B be a computable ordered subfield of
R, and β be a constructivisation of B. Then β ≤ ρ, in particular
B ⊆ Rc .

P r o p o s i t i o n 2. Let B be a subfield of (R; +, ·, 0, 1) and β
be a constructivisation of B such that β ≤ ρ. Then β is a
constructivisation of the ordered field (B;<).

P r o p o s i t i o n 3. Let B be a real closed subfield of
(R; +, ·, 0, 1) and β be a constructivisation of B. Then β is a
strong constructivisation of the ordered field (B;<).
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Adjoining computable reals

We add the following theorem to the results of the previous slide.
The theorem relates constructive fields of reals to the field Rc of
computable reals.

T h e o r e m (with S. Selivanova). For any finite set F ⊆ Rc there
is a strongly constructive real closed subfield (B, β) of the ordered
field Rc such that F ⊆ B.
Cf. an independent result by R. Miller and V. Ocasio Gonzalez.

Thus, the union of all computably presentable real closed fields of
reals is Rc .

Example: For any fixed computable real matrix there is a strongly
constructive real closed subfield (B, β) of Rc containing all the
matrix coefficients.
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Computability in linear algebra

Let (B, β) be a strongly constructive real closed ordered subfield of
Rc . Then one can compute, given a polynomial
p(x) = a0 + a1x

1 · · ·+ akx
k with coefficients in B (i.e., given a

string n0, . . . , nk of naturals with β(n0) = a0, . . . , β(nk) = ak) the
string r1 < · · · < rm, m ≥ 0, of all distinct real roots of p(x) (i.e.,
a string l1, . . . , lm of naturals with β(l1) = r1, . . . , β(lm) = rm), as
well as the multiplicity of any root rj .

Spectral decomposition of a symmetric real matrix A ∈ Mn(R) is a
pair ((λ1, . . . , λn), (v1, . . . , vn)) where λ1 ≤ · · · ≤ λn is the
sequence of all eigenvalues of A (each eigenvalue occurs in the
sequence several times, according to its multiplicity) and v1, . . . , vn
is a corresponding orthonormal basis of eigenvectors.

P r o p o s i t i o n. Let (B, β) be a strongly constructive real
closed ordered subfield of Rc . Given a symmetric n × n-matrix A
with coefficients in B, one can compute its spectral decomposition.
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Computability in linear algebra

The status of spectral decomposition in computable analysis is
quite different. Martin Ziegler and Vasco Brattka (based on old
results by F. Rellich) have shown that the spectral decomposition
of symmetric real matrices is not computable in the Turing sense
(because it is not continuous). But this problem becomes
computable if the number of distinct eigenvalues of the matrix is
given as input.

This result was a motivation for our work because the second
author was interested in the symmetric hyperbolic systems of
PDEs, and difference schemes used in numeric methods for solving
such systems require to compute spectral decompositions of
symmetric matrices and matrix pencils.
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Bit complexity version

Based on deep facts of Computer Algebra, Alaev and S. have
shown PTIME-presentability of Ralg,Calg, and
PTIME-computability of some versions of root-finding in these
fields. We used this to establish upper bounds of bit complexity of
some problems in linear algebra and PDEs. Examples:

T h e o r e m (with S. Selivanova). 1) For any fixed n ≥ 1, there is
a polynomial time algorithm which, given a symmetric matrix
A ∈ Mn(Ralg), computes a spectral decomposition of A.
2) There is a polynomial time algorithm which, given a symmetric
matrix A ∈ Mn(Q), computes a spectral decomposition of A
uniformly on n. The same holds if we replace Q by Q(α) where α
is any fixed algebraic real.

Similar results hold for matrix pencils.
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Primitive recursive version

More recently, we (with S. Selivanova) developed a PR-version of
our approach, in particular of the Ershov-Madison theorem. A
numbering α : N → R is a PR-archimedean field, if A = rng(α) is
an ordered subfield of R, all +, ·,−,−1 , <,= are α-PR, and
α(n) < f (n) for a PR-function f . Examples of typical results:

T h e o r e m. Given a PR-archimedean field α, one can find a
PR-archimedean field α̂ s.t. α ≤ α̂ and Â is the real closure of A.

T h e o r e m. If α is a PR-archimedean field with PR-splitting
then α̂ and the algebraic closure α have PR-root-finding.

Also, the spectral decomposition and Tarski’s elimination are
uniformly PR-computable when restricted to coefficients in a
PRAS-field.
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Primitive recursive version

For any PR-archimedean field α, A ⊆ Rp — the field of PR-reals
(the limits of PR fast Cauchy sequences of rationals). The field Rp

is real closed (P. Hertling) and not computably presentable (N.
Khisamiev).
The union of PR-archimedean fields coincides with R(κ) — the set
of PR reals b such that the sign of polynomials in Q[x ] at b is
checked primitive recursively. There is a PR real which is not in
R(κ).

Many transcendental reals, in particular e and π, may be
(separately) included in a PRAS-field.

BUT, many interesting questions remain open, in particular:
1) Is Q(e, π) a PRAS-field?
2) Is there a PTIME-presentable real closed field of reals
containing a transcendental number?
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PR functions

The PR functions are generated from the distinguished functions
o = λn.0, s = λn.n + 1, and I ni = λx1, . . . , xn.xi by repeated
applications of the operators of superposition S and primitive
recursion R. Thus, any PR function is represented by a “correct”
term in the partial algebra of functions over N. Intuitively, any
total function defined by an explicit definition using (not too
complicated) recursion is PR; the unbounded µ-operator is of
course forbidden but the bounded one is possible.

Consider the structure (N ; +, ◦, J, s, q) where N = NN is the set of
unary functions on N, + and ◦ are binary operations on N defined
by (p + q)(n) = p(n) + q(n) and (p ◦ q)(n) = p(q(n)), J is a
unary operation on N defined by J(p)(n) = pn(0) where p0 = idN
and pn+1 = p ◦ pn, s and q are distinguished elements defined by
s(n) = n + 1 and q(n) = n − [

√
n]2 where, for x ∈ R, [x ] is the

unique integer m with m ≤ x < m + 1. The PR unary functions
coincide with the subalgebra generated by s, q (R. Robinson).
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PR functions

The PR functions are generated from the distinguished functions
o = λn.0, s = λn.n + 1, and I ni = λx1, . . . , xn.xi by repeated
applications of the operators of superposition S and primitive
recursion R. Thus, any PR function is represented by a “correct”
term in the partial algebra of functions over N. Intuitively, any
total function defined by an explicit definition using (not too
complicated) recursion is PR; the unbounded µ-operator is of
course forbidden but the bounded one is possible.

Consider the structure (N ; +, ◦, J, s, q) where N = NN is the set of
unary functions on N, + and ◦ are binary operations on N defined
by (p + q)(n) = p(n) + q(n) and (p ◦ q)(n) = p(q(n)), J is a
unary operation on N defined by J(p)(n) = pn(0) where p0 = idN
and pn+1 = p ◦ pn, s and q are distinguished elements defined by
s(n) = n + 1 and q(n) = n − [

√
n]2 where, for x ∈ R, [x ] is the

unique integer m with m ≤ x < m + 1. The PR unary functions
coincide with the subalgebra generated by s, q (R. Robinson).
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