Khryashchev S. M.

On Multicomponent Continued Fraction Expansions of Hypernumbers of Certain Classes

St. Petersburg State Electrotechnical University
Polynomial Computer Algebra April 15-20, 2024
Euler International Mathematical Institute, St. Petersburg, Russia

Introduction

A new class of multicomponent continued fractions is investigated. It is assumed that some algebraic structures can be define on a set of approximated elements. This allow consider elements of original sets as hypernumbers. The well-known properties of classical continued fractions can be transfer to the multicomponent class of continued fractions that greatly simplifies research.

Basic concepts of the theory of continued fractions

Let $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ be some sequence of characters. A finite continued fraction is given in the form

$$
\begin{equation*}
a_{0}+\left(a_{1}+\cdots+\left(a_{n-1}+\left(a_{n}\right)^{-1}\right)^{-1} \cdots\right)^{-1} \tag{1}
\end{equation*}
$$

which can also be written as an ordinary fraction.
An infinite continued fraction is given in the form

$$
\begin{equation*}
a_{0}+\left(a_{1}+\cdots+\left(a_{n-1}+\left(a_{n}+\ldots\right)^{-1}\right)^{-1} \ldots\right)^{-1} . \tag{2}
\end{equation*}
$$

Left ordinary fractions for (1):

$$
\begin{array}{r}
r_{1}^{\prime}=\left(q_{1}^{\prime}\right)^{-1} p_{1}^{\prime}, \quad p_{1}^{\prime}=a_{1} a_{0}+1, q_{1}^{\prime}=a_{1}, \\
r_{2}^{\prime}=\left(q_{2}^{\prime}\right)^{-1} p_{2}^{\prime}, \quad p_{2}^{\prime}=a_{2}\left(a_{1} a_{0}+1\right)+a_{0}, q_{2}^{\prime}=a_{2} a_{1}+1,
\end{array}
$$

Right ordinary fractions for (1) :

$$
\begin{array}{r}
r_{1}^{\prime \prime}=p_{1}^{\prime \prime}\left(q_{1}^{\prime \prime}\right)^{-1}, \quad p_{1}^{\prime \prime}=a_{0} a_{1}+1, q_{1}^{\prime \prime}=a_{1} \\
r_{2}^{\prime \prime}=p_{2}^{\prime \prime}\left(q_{2}^{\prime \prime}\right)^{-1}, \quad p_{2}^{\prime \prime}=\left(a_{0} a_{1}+1\right) a_{2}+a_{0}, q_{2}^{\prime \prime}=a_{1} a_{2}+1, \text { etc } .
\end{array}
$$

For any $n=1,2, \ldots$:

$$
\begin{equation*}
r_{n}^{\prime}=\left(q_{n}^{\prime}\right)^{-1} p_{n}^{\prime}, \quad r_{n}^{\prime \prime}=p_{n}^{\prime \prime}\left(q_{n}^{\prime \prime}\right)^{-1} \tag{3}
\end{equation*}
$$

which give the same value, i.e. $r_{n}^{\prime}=r_{n}^{\prime \prime}=: r_{n}, \quad n=0,1,2, \ldots$. Hence, $q_{n}^{\prime} p_{n}^{\prime \prime}=p_{n}^{\prime} q_{n}^{\prime \prime}$.

Continued fraction expansion

Euclidean algorithm and iteration sequences
$\mathbb{T}=\{z\}$ is a state space
\mathbb{W} is a lattice in a state space.
$z=\left(a_{0}, a_{1}, \ldots\right)$ is a continued fraction expansion of z.
Recurrent sequences $a_{n}, \alpha_{n}, n=0,1,2, \ldots$ are constructed:
Let $\alpha_{0}=z$.
For any $n, a_{n}=\left[\alpha_{n}\right]$ is the whole part of α_{n}, $\left\langle\alpha_{n}\right\rangle=\alpha_{n}-a_{n}$ is the fractional part. Set $\alpha_{n+1}=\left\langle\alpha_{n}\right\rangle^{-1}$, etc.
The sequence α_{n} is called an iteration sequence.

$$
\begin{equation*}
a_{n}=\alpha_{n}-\left(\alpha_{n+1}\right)^{-1} \in \mathbb{W}, \quad n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

Euler equations

$$
\begin{gather*}
p_{-1}^{\prime}=1, p_{0}^{\prime}=a_{0}, \quad p_{n+1}^{\prime}=a_{n+1} p_{n}^{\prime}+p_{n-1}^{\prime} \tag{5}\\
q_{-1}^{\prime}=0, q_{0}^{\prime}=1, \quad q_{n+1}^{\prime}=a_{n+1} q_{n}^{\prime}+q_{n-1}^{\prime} \tag{6}
\end{gather*}
$$

Or

$$
\begin{gather*}
p_{-1}^{\prime \prime}=1, p_{0}^{\prime \prime}=a_{0}, \quad p_{n+1}^{\prime \prime}=p_{n}^{\prime \prime} a_{n+1}+p_{n-1}^{\prime \prime} \tag{7}\\
q_{-1}^{\prime \prime}=0, q_{0}^{\prime \prime}=1, \quad q_{n+1}^{\prime \prime}=q_{n}^{\prime \prime} a_{n+1}+q_{n-1}^{\prime \prime} \tag{8}
\end{gather*}
$$

Let

$$
\begin{equation*}
\bar{r}_{n}^{\prime}=\operatorname{col}\left(q_{n}^{\prime}, p_{n}^{\prime}\right), \quad \tilde{r}_{n}^{\prime \prime}=\operatorname{col}\left(q_{n}^{\prime \prime}, p_{n}^{\prime \prime}\right) \tag{9}
\end{equation*}
$$

where $q_{n}^{\prime} \in \mathbb{W}, p_{n}^{\prime} \in \mathbb{W}, \quad q_{n}^{\prime \prime} \in \mathbb{W}, p_{n}^{\prime \prime} \in \mathbb{W}, \quad n=-1,0,1,2, \ldots$
Vector equations:

$$
\begin{equation*}
\bar{r}_{n}^{\prime}=a_{n} \bar{r}_{n-1}^{\prime}+\bar{r}_{n-2}^{\prime}, \quad n \geq 1 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{r}_{n}^{\prime \prime}=\bar{r}_{n-1}^{\prime \prime} a_{n}+\bar{r}_{n-2}^{\prime \prime}, \quad n \geq 1 \tag{11}
\end{equation*}
$$

Algebraic and geometric structures on state sets
Let \mathbb{T} be an algebra over a field \mathbb{F}.
We consider $\mathbb{F}=\mathbb{R}$ and $\mathbb{T}=\mathbb{R}, \mathbb{T}=\mathbb{C}, \mathbb{T}=\mathbb{H}$ and others.
Conjugate element:

$$
t \cdot t_{r}^{\star}=f_{r} e_{0}, \quad t_{l}^{\star} \cdot t=f_{l} e_{0}
$$

$f_{r}, f_{l} \in \mathbb{F}, e_{0}$ is the unit element in \mathbb{T}.
$t_{l}^{\star} \cdot t=t \cdot t_{r}^{\star}=|t|^{2}$ - pseudonorm;
$(t+s)^{\star}=t^{\star}+s^{\star},\left(t^{\star}\right)^{\star}=t,(t \cdot s)^{\star}=s^{\star} \cdot t^{\star}, \ldots$.
Inverse element:

$$
t_{r}^{-1}=\frac{1}{t \cdot t_{t} t_{r}^{*}} t_{r}^{\star}=: \frac{1}{\left|| |^{2}\right.} t_{r}^{\star}, \quad t_{l}^{-1}=\frac{1}{t_{l}^{\star \cdot} \cdot t} t_{l}^{\star}=: \frac{1}{|t|^{2}} t_{l}^{\star} .
$$

The expansion $\mathbb{T} \times \mathbb{T}$ of the state space \mathbb{T}.
L) Left projective space:
$\mathbb{P}_{l}^{1}(\mathbb{T}):=\left(\left(\mathbb{T}^{2} \backslash\{0\}\right) / \sim\right)$
$(t, s) \sim(\lambda t, \lambda s)=\lambda(t, s)$ for $(t, s) \in \mathbb{T}^{2} \backslash\{0\}, \lambda \in \mathbb{T} \backslash\{0\}$.
$\operatorname{Pr}_{l}: \mathbb{T}^{2} \mapsto \mathbb{P}_{l}^{1}$ is left projection (partitioning into equivalence classes).
R) Right projective space:
$\mathbb{P}_{r}^{1}(\mathbb{T}):=\left(\left(\mathbb{T}^{2} \backslash\{0\}\right) / \sim\right)$
$(t, s) \sim(t \mu, s \mu)=(t, s) \mu$ for $(t, s) \in \mathbb{T}^{2} \backslash\{0\}, \lambda \in \mathbb{T} \backslash\{0\}$.
$\operatorname{Pr}_{r}: \mathbb{T}^{2} \mapsto \mathbb{P}_{l}^{r}$ is right projection (partitioning into equivalence classes).

Let $(x, y)=\left(1, y x^{-1}\right) x=x\left(1, x^{-1} y\right)$.
$\mathbb{T} \mapsto \mathbb{T}^{2}: z \mapsto(1, z)=: \bar{z}$ - embedding of set \mathbb{T} into \mathbb{T}^{2},
$\frac{\circ}{\bar{z}}$ - the basic vector of the corresponding one-dimensional linear subspace,
z - basic direction.
Let $\stackrel{\circ}{r}_{n}=\operatorname{col}\left(1, r_{n}\right) \in \mathbb{T}^{2}$. Then

$$
\bar{r}_{n}^{\prime}=q_{n}^{\prime} \overline{\bar{r}}_{n}, \quad \bar{r}_{n}^{\prime \prime}=\stackrel{\circ}{r}_{n} q_{n}^{\prime \prime}, \quad n=1,2, \ldots
$$

Bilinear formx on $\mathbb{T}^{2} \times \mathbb{T}^{2}$

Let $\bar{b} \in \mathbb{T}^{2}, \quad \bar{c} \in \mathbb{T}^{2}$ where $\bar{b}=\operatorname{col}\left(b^{1}, b^{2}\right), \bar{c}=\operatorname{col}\left(c^{1}, c^{2}\right)$.
Define a function Δ of \bar{b}, \bar{c} 《determinant rule»:

$$
\Delta(\bar{b}, \bar{c}):=\operatorname{det}(\bar{b}, \bar{c}):=\left|\begin{array}{ll}
b^{1} & c^{1} \\
b^{2} & c^{2}
\end{array}\right|=b^{1} c^{2}-b^{2} c^{1}
$$

1. $\Delta\left(\bar{b}^{\prime}+\bar{b}^{\prime \prime}, \bar{c}\right)=\Delta\left(\bar{b}^{\prime}, \bar{c}\right)+\Delta\left(\bar{b}^{\prime \prime}, \bar{c}\right) ; \Delta\left(\bar{b}, \bar{c}^{\prime}+\bar{c}^{\prime \prime}\right)=\Delta\left(\bar{b}, \bar{c}^{\prime}\right)+\Delta\left(\bar{b}, \bar{c}^{\prime \prime}\right)$,
2. $\Delta(\delta \bar{b}, \bar{c})=\delta \Delta(\bar{b}, \bar{c}), \quad \Delta(\bar{b}, \bar{c} \gamma)=\Delta(\bar{b}, \bar{c}) \gamma, \quad \gamma, \delta \in \mathbb{T}$.
3. $(\Delta(\bar{b}, \bar{c}))^{\star}=-\Delta\left(\bar{c}^{\star}, \bar{b}^{\star}\right)$.

The function Δ can be interpreted as a symplectic scalar product. Let $\bar{b}=\left(b^{1}, b^{2}\right), \bar{c}=\left(c^{1}, c^{2}\right), b^{1} \neq 0, c^{1} \neq 0$.
$\Delta(\bar{b}, \bar{c})=0 \quad \Leftrightarrow \quad\left(b^{1}\right)^{-1} b^{2}=c^{2}\left(c^{1}\right)^{-1}=: r \quad \Leftrightarrow \quad \bar{b}=b^{1} \frac{\circ}{r}, \bar{c}=\frac{\circ}{\bar{r}} c^{1}$,
where $\frac{\circ}{r}=\operatorname{col}(1, r)$.
Thus, the parallelogram has zero volume if and only if the vectors \bar{b}, \bar{c} have same base direction r, i.e., they are parallel.
In particular, the condition $r_{n}^{\prime}=r_{n}^{\prime \prime}$ can be rewritten as

$$
\Delta\left(\bar{r}_{n}^{\prime}, \bar{r}_{n}^{\prime \prime}\right)=0, \quad n=0,1, \ldots
$$

This means that $p_{n}^{\prime}, q_{n}^{\prime}$ and $p_{n}^{\prime \prime}, q_{n}^{\prime \prime}$ change consistently.

Orientation of ordered pairs of \mathbb{T}-vectors

The value of $\Delta(\bar{b}, \bar{c})$ can also be interpreted as the value of the \mathbb{T} valued volume of the parallelogram spanned by the vectors \bar{b}, \bar{c}.

For some ordered pairs (\bar{b}, \bar{c}) the value Δ can be a real.
For such pairs, we can introduce a relation of a orientation.

1) $\Delta(\bar{b}, \bar{c})>0$: the pair (\bar{b}, \bar{c}) is called positively oriented,
r) $\Delta(\bar{b}, \bar{c})<0$: the pair (\bar{b}, \bar{c}) is called negatively oriented.

For any \bar{b}, \bar{c} there exist $\delta \in \mathbb{T}$ and $\gamma \in \mathbb{T}$ such that

$$
\Delta(\delta \bar{b}, \bar{c}) \in \mathbb{R}, \quad \Delta(\bar{b}, \bar{c} \gamma) \in \mathbb{R}
$$

For example, $\delta=(\Delta(\bar{b}, \bar{c}))^{\star}, \gamma=(\Delta(\bar{b}, \bar{c}))^{\star}$.
Thus, it is defined an orientation of 1D linear subspaces.

Definition. The vector \bar{z} lies between the vectors \bar{r}^{\prime} and $\bar{r}^{\prime \prime}$ if the pairs $\left(\bar{r}^{\prime}, \bar{r}^{\prime \prime}\right)$ and $\left(\bar{z}, \bar{r}^{\prime \prime}\right)$ have the same orientation, i.e. $\Delta\left(\bar{r}^{\prime}, \bar{r}^{\prime \prime}\right)$. $\Delta\left(\bar{z}, \bar{r}^{\prime \prime}\right)>0$.

See fig. 2.
The bilinear form Δ is a certain metric characteristic of the state space \mathbb{T}, in terms of which many of the properties of associated elements for continued fractions given below can be expressed.

Continued fractions (1) (2) can be written uniformly:

$$
\begin{aligned}
r_{n}=\left(a_{0} ; a_{1}, \ldots, a_{n-1}, a_{n}, \overline{0}\right), & n=0,1,2, \ldots \\
z=\left(a_{0} ; a_{1}, \ldots, a_{n-1}, a_{n}, \alpha_{n+1}\right), & n=0,1,2, \ldots
\end{aligned}
$$

Hence, for $n \geq 1$:

$$
\begin{gathered}
\bar{r}_{n+1}^{\prime}=a_{n+1} \bar{r}_{n}^{\prime}+\bar{r}_{n-1}^{\prime}, \quad \bar{r}_{n+1}^{\prime \prime}=\bar{r}_{n}^{\prime \prime} a_{n+1}+\bar{r}_{n-1}^{\prime \prime} \\
\bar{z}_{n+1}^{\prime}:=\alpha_{n+1} \bar{r}_{n}^{\prime}+\bar{r}_{n-1}^{\prime}, \quad \bar{z}_{n+1}^{\prime \prime}:=\bar{r}_{n}^{\prime \prime} \alpha_{n+1}+\bar{r}_{n-1}^{\prime \prime}
\end{gathered}
$$

where

$$
\begin{gathered}
\bar{r}_{n}^{\prime}:=\operatorname{col}\left(q_{n}^{\prime}, p_{n}^{\prime}\right), \quad \bar{r}_{n}^{\prime \prime}:=\operatorname{col}\left(q_{n}^{\prime \prime}, p_{n}^{\prime \prime}\right) \\
\bar{z}_{n}^{\prime}:=\operatorname{col}\left(x_{n}^{\prime}, y_{n}^{\prime}\right), \quad \bar{z}_{n}^{\prime \prime}:=\operatorname{col}\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right), \\
r_{n}^{\prime}=\left(q_{n}^{\prime}\right)^{-1} p_{n}^{\prime}, \quad r_{n}^{\prime \prime}=p_{n}^{\prime \prime}\left(q_{n}^{\prime \prime}\right)^{-1} \\
z=z^{\prime}=z_{n}^{\prime}=\left(x_{n}^{\prime}\right)^{-1} y_{n}^{\prime}, \quad z=z^{\prime \prime}=z_{n}^{\prime \prime}=y_{n}^{\prime \prime}\left(x_{n}^{\prime \prime}\right)^{-1} \\
\bar{z}=(1, z), \quad \bar{z}_{n}^{\prime}=x_{n}^{\prime} \bar{z}, \quad \bar{z}_{n}^{\prime \prime}=\bar{z} x_{n}^{\prime \prime}
\end{gathered}
$$

The illustration of relation«lies between».

Figure 1: $x_{n+1}^{\prime \prime}$ is denominator of the fraction $z:=z_{n+1}=y_{n+1}^{\prime \prime}\left(x_{n+1}^{\prime \prime}\right)^{-1}, \stackrel{\circ}{\bar{z}}=(1, z)$.

Figure 2: Bounding sequences \bar{r}_{n}^{\prime} and $\bar{r}_{n}^{\prime \prime}, n=0,1, \ldots$ for direction z.

Auxiliary statements

Lemma 1 The relations are valid:

$$
\begin{align*}
V_{n-1, n} & :=\Delta\left(\bar{r}_{n-1}^{\prime}, \bar{r}_{n}^{\prime \prime}\right)=p_{n-1}^{\prime} q^{\prime \prime}{ }_{n}-q_{n-1}^{\prime} p^{\prime \prime}{ }_{n}=(-1)^{n}, \tag{-6}\\
V_{n . n-1} & :=\Delta\left(\bar{r}_{n}^{\prime}, \bar{r}_{n-1}^{\prime}\right)=p_{n}^{\prime} q_{n-1}^{\prime \prime}-q_{n}^{\prime} p_{n-1}^{\prime \prime}=(-1)^{n} . \tag{-5}
\end{align*}
$$

Lemma 2 The relations are valid:

$$
P_{n}^{\prime}=P_{n}^{\prime \prime}=: P_{n}, \quad Q_{n}^{\prime}=Q_{n}^{\prime \prime}=: Q_{n}
$$

where $P_{n}^{\prime}=p_{n}^{\prime}\left(p_{n-1}^{\prime}\right)^{-1}$ and $Q_{n}^{\prime}=q_{n}^{\prime}\left(q_{n-1}^{\prime}\right)^{-1}$.
Recurrent sequences:

$$
\begin{array}{ll}
P_{n}=a_{n}+\left(P_{n-1}\right)^{-1}, & P_{0}=a_{0}, \quad n \geq 1 \\
Q_{n}=a_{n}+\left(Q_{n-1}\right)^{-1}, & Q_{1}=a_{1}, \quad n \geq 2 \\
& Q_{n}=\left(a_{n}, \ldots, a_{1}\right)
\end{array}
$$

Let $q_{n}^{2}:=\left|q_{n}^{\prime}\right|^{2}=\left|q_{n}^{\prime \prime}\right|^{2}$. Then $\left|q_{n}\right|:=\sqrt{q_{n}^{2}}$.

1 The main theorems on continued fractions

By formulas (-6) and (-5):

$$
\Delta\left(\vec{z}, \vec{r}_{n}^{\prime \prime}\right):=z q_{n}^{\prime \prime}-p_{n}^{\prime \prime}=(-1)^{n}\left(x_{n+1}^{\prime \prime}\right)^{-1}=(-1)^{n}\left(q_{n}^{\prime \prime}\right)^{-1} c_{n}^{-1}
$$

and

$$
\Delta\left(\vec{r}_{n}^{\prime}, \vec{z}\right):=q_{n}^{\prime} z-p_{n}^{\prime}=(-1)^{n}\left(x_{n+1}^{\prime}\right)^{-1}=(-1)^{n} c_{n}^{-1}\left(q_{n}^{\prime}\right)^{-1}
$$

where

$$
\begin{equation*}
c_{n}=\left[\alpha_{n+1}+\left(Q_{n}\right)^{-1}\right] . \tag{-10}
\end{equation*}
$$

The value $\theta_{n}=c_{n}^{-1}$ is the approximation coefficient.

Theorem 1 For residuals, the following relations are valid

$$
\begin{gather*}
\left|z q_{n}^{\prime \prime}-p_{n}^{\prime \prime}\right|=\left|q_{n}^{\prime} z-p_{n}^{\prime}\right|=\frac{1}{\left|c_{n}\right|} \frac{1}{\left|q_{n}\right|} \tag{-9}\\
\left|z-r_{n}\right|=\frac{1}{\left|c_{n}\right|} \frac{1}{\left|q_{n}\right|^{2}} \tag{-8}
\end{gather*}
$$

Condition for the convergence of convergents as $n \rightarrow \infty$: $\left(x_{n}\right)^{-1} \rightarrow 0 \quad \Leftrightarrow \quad \theta_{n}=o\left(\left|q_{n}\right|\right)$, where $\left|q_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.
1.1 Some special conditions for the convergence of continued fractions

In formula (-10), for all $n \geq 0$:

$$
\left|\alpha_{n+1}\right|>1 \&\left|\left(Q_{n}\right)^{-1}\right|<1
$$

However, this does not guarantee that c_{n} is separated from zero.
To ensure this condition, we introduce additional enhanced restrictions:

$$
\left|\alpha_{n+1}\right| \geq \alpha>1 \&\left|\left(Q_{n}\right)^{-1}\right|<1,
$$

or

$$
\left|\alpha_{n+1}\right|>1 \& \quad\left|\left(Q_{n}\right)^{-1}\right| \leq 1-c^{-1}<1
$$

Remark 1 The inequalities $\alpha_{n} \geq \underline{\alpha}>1$ can be interpreted as conditions of strong non-degeneracy of a iteration sequence.

Inequalities $\left|Q_{n}^{-1}\right| \leq c^{-1}<1$ from formula is equivalent to the inequalities $\left|q_{n}\right|>c\left|q_{n-1}\right|$.

By the triangle inequality, for $C=\min \left\{\underline{\alpha}-1,1-c^{-1}\right\}, c>1$, the following condition is satisfied:

$$
0<C \leq\left|c_{n}\right|=\left|\alpha_{n+1}+\left(Q_{n}\right)^{-1}\right|, \quad n \geq 0 .
$$

Theorem 2 The following estimates for the residuals are valid:

$$
\begin{aligned}
\left|q_{n}^{\prime} z-p_{n}^{\prime}\right|=\left|z q_{n}^{\prime \prime}-p_{n}^{\prime \prime}\right| & \leq \frac{1}{C\left|q_{n}\right|^{2}} \\
\left|z-r_{n}\right| & \leq \frac{1}{C\left|q_{n}\right|^{2}}
\end{aligned}
$$

References

[1] S. G. Dani, Continued fraction expansions for complex numbers a general approach. Acta Aritm., 171 [2015] , 355-369.
[2] S. M. Khryashchev, A Finding of Switching Instants for Dynamical Polysystems by Applying Continued Fractions. Nonlinear Phenomena in Complex Systems. 2021, Vol.24. No.2, 175-183
[3] S. M. Khryashchev, A Method of Determining of Switching Instants for Discrete-time Control Systems. SCP 2020. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https: // doi.org/10.1007/978-3-030-87966-2 8 .

