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Introduction

A new class of multicomponent continued fractions is investigated.

It is assumed that some algebraic structures can be de�ne on a set of

approximated elements. This allow consider elements of original sets

as hypernumbers. The well-known properties of classical continued

fractions can be transfer to the multicomponent class of continued

fractions that greatly simpli�es research.
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Basic concepts of the theory of continued fractions

Let a0, a1, . . . , an, . . . be some sequence of characters. A �nite con-

tinued fraction is given in the form

a0 + (a1 + · · · + (an−1 + (an)
−1)−1 . . . )−1, (1)

which can also be written as an ordinary fraction.

An in�nite continued fraction is given in the form

a0 + (a1 + · · · + (an−1 + (an + . . . )−1)−1 . . . )−1. (2)
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Left ordinary fractions for (1):

r′1 = (q′1)
−1p′1, p′1 = a1a0 + 1, q′1 = a1,

r′2 = (q′2)
−1p′2, p′2 = a2(a1a0 + 1) + a0, q

′
2 = a2a1 + 1,

Right ordinary fractions for (1) :

r′′1 = p′′1(q
′′
1 )

−1, p′′1 = a0a1 + 1, q′′1 = a1,

r′′2 = p′′2(q
′′
2 )

−1, p′′2 = (a0a1 + 1)a2 + a0, q
′′
2 = a1a2 + 1, etc.
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For any n = 1, 2, . . . :

r′n = (q′n)
−1p′n, r′′n = p′′n(q

′′
n)

−1, (3)

which give the same value, i.e. r′n = r′′n =: rn, n = 0, 1, 2, . . . .

Hence, q′np
′′
n = p′nq

′′
n.
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Continued fraction expansion

Euclidean algorithm and iteration sequences

T = {z} is a state space

W is a lattice in a state space.

z = (a0, a1, . . . ) is a continued fraction expansion of z.

Recurrent sequences an, αn, n = 0, 1, 2, . . . are constructed:

Let α0 = z.

For any n, an = [αn] is the whole part of αn,

⟨αn⟩ = αn − an is the fractional part. Set αn+1 = ⟨αn⟩−1, etc.

The sequence αn is called an iteration sequence.

an = αn − (αn+1)
−1 ∈ W, n = 0, 1, 2, . . . . (4)
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Euler equations

p′−1 = 1, p′0 = a0, p′n+1 = an+1p
′
n + p′n−1, (5)

q′−1 = 0, q′0 = 1, q′n+1 = an+1q
′
n + q′n−1, (6)

or

p′′−1 = 1, p′′0 = a0, p′′n+1 = p′′nan+1 + p′′n−1, (7)

q′′−1 = 0, q′′0 = 1, q′′n+1 = q′′nan+1 + q′′n−1. (8)
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Let

r′n = col(q′n, p
′
n), r̃′′n = col(q′′n, p

′′
n), (9)

where q′n ∈ W, p′n ∈ W, q′′n ∈ W, p′′n ∈ W, n = −1, 0, 1, 2, . . . .

Vector equations:

r′n = anr
′
n−1 + r′n−2, n ≥ 1 (10)

or

r′′n = r′′n−1an + r′′n−2, n ≥ 1. (11)
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Algebraic and geometric structures on state sets

Let T be an algebra over a �eld F.
We consider F = R and T = R, T = C, T = H and others.

Conjugate element:

t · t⋆r = fre0, t⋆l · t = fle0,

fr, fl ∈ F, e0 is the unit element in T.
t⋆l · t = t · t⋆r = |t|2- pseudonorm;

(t + s)⋆ = t⋆ + s⋆, (t⋆)⋆ = t, (t · s)⋆ = s⋆ · t⋆, . . . .
Inverse element:

t−1
r = 1

t·t⋆r
t⋆r =:

1
|t|2t

⋆
r, t−1

l = 1
t⋆l ·t

t⋆l =:
1
|t|2t

⋆
l .
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The expansion T× T of the state space T.

L) Left projective space:

P1
l (T) := ((T2 \ {0})/ ∼)

(t, s) ∼ (λt, λs) = λ(t, s) for (t, s) ∈ T2 \ {0}, λ ∈ T \ {0}.
Prl : T2 7→ P1

l is left projection (partitioning into equivalence classes).

R) Right projective space:

P1
r(T) := ((T2 \ {0})/ ∼)

(t, s) ∼ (tµ, sµ) = (t, s)µ for (t, s) ∈ T2 \ {0}, λ ∈ T \ {0}.
Prr : T2 7→ Pr

l is right projection (partitioning into equivalence

classes).
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Let (x, y) = (1, yx−1)x = x(1, x−1y).

T 7→ T2 : z 7→ (1, z) =:
◦
z � embedding of set T into T2,

◦
z � the basic vector of the corresponding one-dimensional linear

subspace,

z � basic direction.

Let
◦
rn = col(1, rn) ∈ T2. Then

r′n = q′n
◦
rn, r′′n =

◦
rnq

′′
n, n = 1, 2, . . . .
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Bilinear formx on T2 × T2

Let b ∈ T2, c ∈ T2 where b = col(b1, b2), c = col(c1, c2).

De�ne a function ∆ of b, c �determinant rule�:

∆(b, c) := det(b, c) :=

∣∣∣∣b1 c1

b2 c2

∣∣∣∣ = b1c2 − b2c1,

1.∆(b
′
+ b

′′
, c) = ∆(b

′
, c) + ∆(b

′′
, c); ∆(b, c′ + c′′) = ∆(b, c′) + ∆(b, c′′),

2.∆(δb, c) = δ∆(b, c), ∆(b, cγ) = ∆(b, c)γ, γ, δ ∈ T.
3. (∆(b, c))⋆ = −∆(c⋆, b

⋆
).
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The function ∆ can be interpreted as a symplectic scalar product.

Let b = (b1, b2), c = (c1, c2), b1 ̸= 0, c1 ̸= 0.

∆(b, c) = 0 ⇔ (b1)−1b2 = c2(c1)−1 =: r ⇔ b = b1
◦
r, c =

◦
rc1,

where
◦
r = col(1, r).

Thus, the parallelogram has zero volume if and only if the vectors

b, c have same base direction r, i.e., they are parallel.

In particular, the condition r′n = r′′n can be rewritten as

∆(r′n, r
′′
n) = 0, n = 0, 1, . . . .

This means that p′n, q
′
n and p′′n, q

′′
n change consistently.
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Orientation of ordered pairs of T-vectors

The value of ∆(b, c) can also be interpreted as the value of the T-
valued volume of the parallelogram spanned by the vectors b, c.

For some ordered pairs (b, c) the value ∆ can be a real.

For such pairs, we can introduce a relation of a orientation.

l) ∆(b, c) > 0: the pair (b, c) is called positively oriented,

r) ∆(b, c) < 0: the pair (b, c) is called negatively oriented.

For any b, c there exist δ ∈ T and γ ∈ T such that

∆(δb, c) ∈ R, ∆(b, cγ) ∈ R.

For example, δ = (∆(b, c))⋆, γ = (∆(b, c))⋆.

Thus, it is de�ned an orientation of 1D linear subspaces.
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De�nition. The vector z lies between the vectors r′ and r′′ if the

pairs (r′, r′′) and (z, r′′) have the same orientation, i.e. ∆(r′, r′′) ·
∆(z, r′′) > 0.

See �g. 2.

The bilinear form ∆ is a certain metric characteristic of the state

space T, in terms of which many of the properties of associated ele-

ments for continued fractions given below can be expressed.
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Continued fractions (1) (2) can be written uniformly:

rn = ((a0; a1, . . . , an−1, an, 0)), n = 0, 1, 2, . . . ,

z = ((a0; a1, . . . , an−1, an, αn+1)), n = 0, 1, 2, . . . .

Hence, for n ≥ 1:

r′n+1 = an+1r
′
n + r′n−1, r′′n+1 = r′′nan+1 + r′′n−1,

z′n+1 := αn+1r
′
n + r′n−1, z′′n+1 := r′′nαn+1 + r′′n−1,
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where

r′n := col(q′n, p
′
n), r′′n := col(q′′n, p

′′
n),

z′n := col(x′n, y
′
n), z′′n := col(x′′n, y

′′
n),

r′n = (q′n)
−1p′n, r′′n = p′′n(q

′′
n)

−1,

z = z′ = z′n = (x′n)
−1y′n, z = z′′ = z′′n = y′′n(x

′′
n)

−1,
◦
z = (1, z), z′n = x′n

◦
z, z′′n =

◦
zx′′n.
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The illustration of relation �lies between�.

Figure 1: x′′
n+1 is denominator of the fraction z := zn+1 = y′′n+1(x

′′
n+1)

−1 ,
◦
z = (1, z).
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Figure 2: Bounding sequences r′n and r′′n, n = 0, 1, . . . for direction z.
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Auxiliary statements

Lemma 1 The relations are valid:

Vn−1,n := ∆(r′n−1, r
′′
n) = p′n−1q

′′
n − q′n−1p

′′
n = (−1)n, (-6)

Vn.n−1 := ∆(r′n, r
′
n−1) = p′nq

′′
n−1 − q′np

′′
n−1 = (−1)n. (-5)
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Lemma 2 The relations are valid:

P ′
n = P ′′

n =: Pn, Q′
n = Q′′

n =: Qn,

where P ′
n = p′n(p

′
n−1)

−1 and Q′
n = q′n(q

′
n−1)

−1 .

Recurrent sequences:

Pn = an + (Pn−1)
−1, P0 = a0, n ≥ 1,

Qn = an + (Qn−1)
−1, Q1 = a1, n ≥ 2,

Qn = (an, . . . , a1).

Let q2n := |q′n|2 = |q′′n|2. Then |qn| :=
√
q2n.
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1 The main theorems on continued fractions

By formulas (-6) and (-5):

∆(z⃗, r⃗′′n) := zq′′n − p′′n = (−1)n(x′′n+1)
−1 = (−1)n(q′′n)

−1c−1
n ,

and

∆(r⃗′n, z⃗) := q′nz − p′n = (−1)n(x′n+1)
−1 = (−1)nc−1

n (q′n)
−1,

where

cn = [αn+1 + (Qn)
−1]. (-10)

The value θn = c−1
n is the approximation coe�cient.
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Theorem 1 For residuals, the following relations are valid

|zq′′n − p′′n| = |q′nz − p′n| =
1

|cn|
1

|qn|
, (-9)

|z − rn| =
1

|cn|
1

|qn|2
. (-8)

Condition for the convergence of convergents as n → ∞:

(xn)
−1 → 0 ⇔ θn = o(|qn|),

where |qn| → ∞ asn → ∞.
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1.1 Some special conditions for the convergence of continued fractions

In formula (-10), for all n ≥ 0:

|αn+1| > 1& |(Qn)
−1| < 1.

However, this does not guarantee that cn is separated from zero.

To ensure this condition, we introduce additional enhanced restric-

tions:

|αn+1| ≥ α > 1& |(Qn)
−1| < 1,

or

|αn+1| > 1& |(Qn)
−1| ≤ 1− c−1 < 1.
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Remark 1 The inequalities αn ≥ α > 1 can be interpreted as condi-

tions of strong non-degeneracy of a iteration sequence.

Inequalities |Q−1
n | ≤ c−1 < 1 from formula is equivalent to the

inequalities |qn| > c|qn−1|.

By the triangle inequality, for C = min{α− 1, 1− c−1}, c > 1, the

following condition is satis�ed:

0 < C ≤ |cn| = |αn+1 + (Qn)
−1|, n ≥ 0.
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Theorem 2 The following estimates for the residuals are valid:

|q′nz − p′n| = |zq′′n − p′′n| ≤
1

C|qn|2
,

|z − rn| ≤
1

C|qn|2
.

26



References

[1] S. G. Dani, Continued fraction expansions for complex numbers �

a general approach. Acta Aritm., 171 [2015] , 355-369.

[2] S. M. Khryashchev, A Finding of Switching Instants for Dynami-

cal Polysystems by Applying Continued Fractions. Nonlinear Phe-

nomena in Complex Systems. 2021, Vol.24. No.2, 175 - 183

[3] S. M. Khryashchev, A Method of Determining of Switching

Instants for Discrete-time Control Systems. SCP 2020. Lec-

ture Notes in Control and Information Sciences - Proceedings.

Springer, Cham. https: // doi.org/10.1007/978 -3-030- 87966-218.

27


