Polynomial method for point configurations

Fedor Petrov

Abstract

A celebrated theorem due to Bannai-Bannai-Stanton says that if A is a set of points in \mathbb{R}^{d}, which determines two distinct distances, then $$
|A| \leqslant\binom{ d+s}{s}
$$

I want to discuss a short proof of this result which combines Sylvesters Law of Inertia for quadratic forms with the proof of the so-called Croot-Lev-Pach Lemma [\mathbb{I}] from additive combinatorics. Based on a joint work [[$]$] with C. Pohoata.

References

[1] E. Croot, V. Lev, and P. Pach, Progression-free sets in \mathbb{Z}_{4}^{n} are exponentially small, Annals of Mathematics 185 (Jan. 2017), no. 1, 331-337.
[2] F. Petrov and C. Pohoata, A remark on sets with few distances in \mathbb{R}^{d}, Proceedings of the American Mathematical Society 149 (Nov. 2020), no. 2, 569-571.

Fedor Petrov

Department of Mathematics and Computer Science, St. Petersburg State University; St. Petersburg Department of V. A. Steklov Mathematical Institute, Russian Academy of Sciences;
St. Petersburg, Russia
e-mail: f.v.petrov@spbu.ru

