On pictures related to some exponential sums

N. V. Proskurin

Abstract

By numerical experiments with exponential sums in finite fields, it is discovered relation with flat curve known as Kepler trifolium. A theoretical explanation for this observation is given in the present paper.

0. Preliminaries.

Consider the field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ of prime order p and a non-trivial character χ of its multiplicative group extended by setting $\chi(0)=0$. Let e_{p} be the additive character

$$
x \mapsto \exp (2 \pi i x / p)
$$

of \mathbb{F}_{p}. Given one-variable polynomials f, g over \mathbb{F}_{p}, consider the sum

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{p}} \chi(f(x)) e_{p}(g(x)) \tag{1}
\end{equation*}
$$

That is an exponential character sum of mixed type, see [1]. Under some general assumptions on f, g and χ, one has

$$
\begin{equation*}
\left|\sum_{x \in \mathbb{F}_{p}} \chi(f(x)) e_{p}(g(x))\right| \leq(m+n-1) \sqrt{p} \tag{2}
\end{equation*}
$$

with $n=\operatorname{deg}(g)$ and $m=\operatorname{deg}($ radical of $f)$, see [1] and [2].
In particular, let ψ be a cubic character and let $f(x)=x, g(x)=x^{2}$. This case (2) with $\chi=\psi$ implies that the sum

$$
\begin{equation*}
E_{p}(\psi)=\frac{1}{2 \sqrt{p}} \sum_{x \in \mathbb{F}_{p}} \psi(x) e_{p}\left(x^{2}\right) \tag{3}
\end{equation*}
$$

is located in the circle $D=\{z \in \mathbb{C}| | z \mid \leq 1\}$. We are interested in distribution of the points $E_{p}(\psi)$ in D. In the present paper we provide a theoretical explanation for our numerical experimental observations [4].

1. Numerical observations.

We have evaluated the sums $E_{p}(\psi)$ for all cubic characters ψ and for all prime $p \equiv$ $1 \bmod 6$ subject to $p \leq 360000$. The assumption $p \equiv 1(\bmod 6)$ is included here just to ensure the existence of cubic characters. The following figure on complex plane \mathbb{C} represents the results originally reported in [4].

On this figure, it is shown the circle D, its boundary $\bar{D}=\{z \in \mathbb{C}| | z \mid=1\}$, the real and imaginary axis, and some 18-petals flower. The boundary of the petals are formed by the points $E_{p}(\psi)$ with p and characters ψ as above. In that follows, we will recognise six copies of Kepler trifolium here.

2. Gauss sums.

The Gauss sums $G(\chi)$ are the ones (1) with $f(x)=g(x)=x$, so that

$$
\begin{equation*}
G(\chi)=\sum_{x \in \mathbb{F}_{p}} \chi(x) e_{p}(x) \tag{4}
\end{equation*}
$$

For any prime p and non-trivial character χ one has

$$
\begin{equation*}
|G(\chi)|^{2}=p \quad \text { and } \quad G(\chi) G(\bar{\chi})=\chi(-1) p \tag{5}
\end{equation*}
$$

where $\bar{\chi}$ is the complex conjugation of χ. One say $G(\chi)$ is a quadratic, cubic or sextic sums according to χ is a character of order 2,3 or 6 .
By Gauss, for the quadratic character κ, the sum $G(\kappa)$ is equal to \sqrt{p} or $i \sqrt{p}$ according to $p \equiv 1 \bmod 4$ or $p \equiv 3 \bmod 4$.
To deal with cubic characters, assume $p \equiv 1 \bmod 6$. This case we have two cubic characters, say ψ and $\bar{\psi}$, the quadratic character κ, and sextic characters $\kappa \psi$ and $\kappa \bar{\psi}$. The sextic sums can be evaluated (see theorem 3.1 in [3]) in terms of cubic and quadratic ones by the formula

$$
\begin{equation*}
G(\kappa \bar{\psi})=\bar{\psi}(2) G(\kappa) G(\psi)^{2} / p \tag{6}
\end{equation*}
$$

For the cubic characters ψ one has $\psi(-1)=1$, so that (5) implies

$$
\begin{equation*}
G(\bar{\psi})=p / G(\psi) \tag{7}
\end{equation*}
$$

3. Evaluation of sums (3) in terms of Gauss sums.

Consider the sum $E_{p}(\psi)$ in (3) with a cubic character $\psi, p \equiv 1 \bmod 6$. One has $\psi(x)=\bar{\psi}\left(x^{2}\right)$ for all $x \in \mathbb{F}_{p}$ and

$$
\sharp\left\{x \in \mathbb{F}_{p} \mid x^{2}=t\right\}=1+\kappa(t) \quad \text { for all } t \in \mathbb{F}_{p} .
$$

Recall, it is assumed $\kappa(0)=\psi(0)=0$. It follows,

$$
\begin{aligned}
2 \sqrt{p} E_{p}(\psi) & =\sum_{t \in \mathbb{F}_{p}} \sharp\left\{x \in \mathbb{F}_{p} \mid x^{2}=t\right\} \bar{\psi}(t) e_{p}(t) \\
& =\sum_{t \in \mathbb{F}_{p}}(1+\kappa(t)) \bar{\psi}(t) e_{p}(t)=G(\bar{\psi})+G(\kappa \bar{\psi}) .
\end{aligned}
$$

This can be rewritten as $2 \sqrt{p} E_{p}(\psi)=p / G(\psi)+\bar{\psi}(2) G(\kappa) G(\psi)^{2} / p$, see (6) and (7), and finally as follows.

Proposition 1. For every prime $p \equiv 1 \bmod 6$, one has

$$
\begin{equation*}
E_{p}(\psi)=\frac{1+Q T^{3}}{2 T} \quad \text { with } T=G(\psi) / \sqrt{p}, \quad Q=\bar{\psi}(2) G(\kappa) / \sqrt{p} \tag{8}
\end{equation*}
$$

Here ψ and κ are cubic and quadratic characters of \mathbb{F}_{p} and $|T|=|Q|=1$.

4. Kepler trifolium.

Consider the complex plane \mathbb{C} with the Cartesian coordinates $x=\operatorname{Re} z, y=\operatorname{Im} z$, $z \in \mathbb{C}$, the unit circle D centred at the origin 0 , its boundary \bar{D} and the curve C

defined by the equation

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{2}+3 x y^{2}-x^{3}=0 \tag{9}
\end{equation*}
$$

This curve is known as Kepler trifolium and also as regular trifolium, three leaf/petal rose, three leaf/petal clover. It remains unchanged when rotated through the angles of $\pm 2 \pi / 3$ and it can be given by the polar equation $r=\cos (3 \varphi), r$ being a point on the axis obtained by rotation of the real axis through the angle φ.

5. Parametrization.

Consider again the Kepler trifolium C. We intend to show that C can be parametrized by a rational function on \bar{D}. To be precise, we mean the complex function
and its restriction to \bar{D}.

$$
\begin{equation*}
z \mapsto \frac{1+z^{3}}{2 z} \tag{10}
\end{equation*}
$$

Proposition 2. The function (10) takes any point of \bar{D} to some point of C. In particular, it takes cubic roots of -1 to the triple point 0 of C. It takes cubic roots of 1 to the cubic roots of 1 . Except for the point 0 , every point of C is the image of an unique point of \bar{D}. The boundary of each petal is the image of someone arc in \bar{D} whose endpoints are the cubic roots of -1 .
Proof. Let $z=x+i y$ with real x and y. If $z \in \bar{D}$ then $x^{2}+y^{2}=1$ and

$$
\begin{gathered}
\frac{1+z^{3}}{2 z}=\frac{\bar{z}+z^{2}}{2}=X+i Y \\
\text { with } \quad X=(1+x) S, \quad Y=y S, \quad S=x-\frac{1}{2} .
\end{gathered}
$$

It follows, $X^{2}=(1+x)^{2} S^{2}, Y^{2}=\left(1-x^{2}\right) S^{2}, X^{2}+Y^{2}=2(1+x) S^{2}$, and then

$$
\left(X^{2}+Y^{2}\right)^{2}+3 X Y^{2}-X^{3}=0
$$

According to (9), that means $Z=X+i Y$ is a point of the curve C, as required. In particular, if z is a cubic root of -1 then $1+z^{3}=0$ and $Z=0$. If z is a cubic root of 1 then $Z=\bar{z}$ and that is a cubic root of 1 as well.
Now let X and Y be the real and the imaginary parts of some point $Z \in C$. Assume, this Z is a point of the right petal on the figure and $Z \neq 1$. We have $X>0$ and $X \neq 1$. For every such X, there is a unique $x \geq-1$ satisfying

$$
(1+x) S=X \quad \text { with } \quad S=x-\frac{1}{2} .
$$

This x satisfies $1 / 2<x<1$. Then we should take y satisfying $Y=y S$ and to check that $x^{2}+y^{2}=1$. The point $x+i y$ is the only one of \bar{D} whose image is equal to Z. This point belongs to the arc of \bar{D} that passes through 1 and whose endpoints are $\exp (\pm \pi i / 3)$. The points Z of another two petals can be treated similarly.
Proposition 3. Let $v=\exp (i t)$ and $w=\exp (i t / 3)$ with some $t \in \mathbb{R}$. The image of \bar{D} under the function

$$
\begin{equation*}
z \mapsto \frac{1+v z^{3}}{2 z} \tag{11}
\end{equation*}
$$

is the curve $C^{\prime}=w C$ obtained by rotation of C around 0 through the angle $t / 3$.

Proof. As the point z runs over \bar{D}, the point $w z$ runs over \bar{D} and the point

$$
\frac{1+v z^{3}}{2 z}=w \frac{1+(w z)^{3}}{2(w z)}
$$

runs over $C^{\prime}=w C$ by Proposition 2, as required.

6. Distribution of the sums (3).

Now we are ready to give a theoretical explanation to the shown above distribution of the sums $E_{p}(\psi)$, see Section 1. Compare the formula (8) in Proposition 1 with the formula (11) in Proposition 3. It follows from the Gauss formulas for the quadratic sums that the only possible values of the coefficient Q in (8) are either $1, \omega, \omega^{2}$ or $i, i \omega, i \omega^{2}$ according to $p \equiv 1 \bmod 4$ or $p \equiv 3 \bmod 4$. Here $\omega=\exp (2 \pi i / 3)$, so that $1, \omega, \omega^{2}$ are all possible values of $\psi(2)$. We find easily that any point $E_{p}(\psi)$ in (3) belongs to some of six curves $w C$ obtained by rotation of C around 0 through the angles $w=0, \pm 2 \pi / 9, \pi / 6, \pi / 2 \pm \pi / 9$, so that

$$
\begin{equation*}
E_{p}(\psi) \in \tilde{C}=\bigcup_{w} w C \tag{12}
\end{equation*}
$$

This is consistent with the figure presented in Section 1.
It remains an open question whether the countable set of all the points $E_{p}(\psi)$ is everywhere dense in the curve \tilde{C} in (12). It seems likely that the set of all the points $E_{p}(\psi)$ is everywhere dense in \tilde{C} (with the topology induced by the canonical topology in \mathbb{C}). In the meantime, the points T in Proposition 1 forms everywhere dense subset in \bar{D}. That is known from research of the cubic Gauss sums related to the Kummer problem [5].

References

[1] J.-P. Serre, Majorations de sommes exponentielles, Société Mathématique de France, Asterisque 41-42, 111-126 (1977).
[2] S. A. Stepanov, Arithmetic of algebraic curves, Moscow, 1991 (in Russian). English translation: Springer-Verlag, 1995.
[3] B. C. Berndt, R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, Journal of number theory 11, 349-398 (1979).
[4] N. V. Proskurin, On exponential sums and flowers, Algebra and number theory 4, Zap. Nauchn. semin. POMI 502, 133-138 (2021) (in Russian).
[5] D. R. Heath-Brown, S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310, 111-130 (1979).
N. V. Proskurin

St. Petersburg Department of Steklov Institute of Mathematics RAS
e-mail: np@pdmi.ras.ru

