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Abstract. By numerical experiments with exponential sums in �nite �elds, it
is discovered relation with �at curve known as Kepler trifolium. A theoretical
explanation for this observation is given in the present paper.

0. Preliminaries.

Consider the �eld Fp = Z/pZ of prime order p and a non-trivial character χ of its
multiplicative group extended by setting χ(0) = 0. Let ep be the additive character

x 7→ exp(2πix/p)

of Fp. Given one-variable polynomials f, g over Fp, consider the sum∑
x∈Fp

χ
(
f(x)

)
ep
(
g(x)

)
. (1)

That is an exponential character sum of mixed type, see [1]. Under some general
assumptions on f , g and χ, one has∣∣∣ ∑

x∈Fp

χ
(
f(x)

)
ep
(
g(x)

) ∣∣∣ ≤ (m+ n− 1)
√
p (2)

with n = deg(g) and m = deg(radical of f), see [1] and [2].

In particular, let ψ be a cubic character and let f(x) = x, g(x) = x2. This case
(2) with χ = ψ implies that the sum

Ep(ψ) =
1

2
√
p

∑
x∈Fp

ψ(x)ep(x2) (3)

is located in the circle D =
{
z ∈ C

∣∣ |z | ≤ 1
}
. We are interested in distribution of

the points Ep(ψ) in D. In the present paper we provide a theoretical explanation
for our numerical experimental observations [4].
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1. Numerical observations.

We have evaluated the sums Ep(ψ) for all cubic characters ψ and for all prime p ≡
1 mod 6 subject to p ≤ 360000. The assumption p ≡ 1 (mod 6) is included here
just to ensure the existence of cubic characters. The following �gure on complex
plane C represents the results originally reported in [4].

On this �gure, it is shown the circle D, its boundary D = {z ∈ C | |z | = 1}, the
real and imaginary axis, and some 18 -petals �ower. The boundary of the petals
are formed by the points Ep(ψ) with p and characters ψ as above. In that follows,
we will recognise six copies of Kepler trifolium here.

2. Gauss sums.

The Gauss sums G(χ) are the ones (1) with f(x) = g(x) = x, so that

G(χ) =
∑
x∈Fp

χ(x)ep(x). (4)

For any prime p and non-trivial character χ one has

|G(χ)|2 = p and G(χ)G(χ̄) = χ(−1)p, (5)

where χ̄ is the complex conjugation of χ. One say G(χ) is a quadratic, cubic or
sextic sums according to χ is a character of order 2, 3 or 6.
By Gauss, for the quadratic character κ, the sum G(κ) is equal to

√
p or i

√
p

according to p ≡ 1 mod 4 or p ≡ 3 mod 4.
To deal with cubic characters, assume p ≡ 1 mod 6. This case we have two cubic
characters, say ψ and ψ̄, the quadratic character κ, and sextic characters κψ and
κψ̄. The sextic sums can be evaluated (see theorem 3.1 in [3]) in terms of cubic
and quadratic ones by the formula

G(κψ̄) = ψ̄(2)G(κ)G(ψ)2/p. (6)

For the cubic characters ψ one has ψ(−1) = 1, so that (5) implies

G(ψ̄) = p/G(ψ). (7)
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3. Evaluation of sums (3) in terms of Gauss sums.

Consider the sum Ep(ψ) in (3) with a cubic character ψ, p ≡ 1 mod 6. One has
ψ(x) = ψ̄(x2) for all x ∈ Fp and

]{x ∈ Fp | x2 = t} = 1 + κ(t) for all t ∈ Fp.

Recall, it is assumed κ(0) = ψ(0) = 0. It follows,

2
√
pEp(ψ) =

∑
t∈Fp

]{x ∈ Fp | x2 = t}ψ̄(t)ep(t)

=
∑
t∈Fp

(
1 + κ(t)

)
ψ̄(t)ep(t) = G(ψ̄) +G(κψ̄).

This can be rewritten as 2
√
pEp(ψ) = p/G(ψ) + ψ̄(2)G(κ)G(ψ)2/p, see (6) and

(7), and �nally as follows.

Proposition 1. For every prime p ≡ 1 mod 6, one has

Ep(ψ) =
1 +QT 3

2T
with T = G(ψ)/

√
p, Q = ψ̄(2)G(κ)/

√
p. (8)

Here ψ and κ are cubic and quadratic characters of Fp and |T | = |Q| = 1. �

4. Kepler trifolium.

Consider the complex plane C with the Cartesian coordinates x = Re z, y = Im z,
z ∈ C, the unit circle D centred at the origin 0, its boundaryD and the curve C

de�ned by the equation

(x2 + y2)2 + 3xy2 − x3 = 0. (9)

This curve is known as Kepler trifolium and also as regular trifolium, three leaf/petal
rose, three leaf/petal clover. It remains unchanged when rotated through the an-
gles of ±2π/3 and it can be given by the polar equation r = cos(3ϕ), r being a
point on the axis obtained by rotation of the real axis through the angle ϕ.



4 N.V.Proskurin

5. Parametrization.

Consider again the Kepler trifolium C. We intend to show that C can be parametrized
by a rational function onD. To be precise, we mean the complex function

z 7→ 1 + z3

2z
(10)

and its restriction toD.

Proposition 2. The function (10) takes any point of D to some point of C. In
particular, it takes cubic roots of −1 to the triple point 0 of C. It takes cubic roots

of 1 to the cubic roots of 1. Except for the point 0, every point of C is the image

of an unique point ofD. The boundary of each petal is the image of someone arc

inD whose endpoints are the cubic roots of −1.

Proof. Let z = x+ iy with real x and y. If z ∈D then x2 + y2 = 1 and

1 + z3

2z
=
z̄ + z2

2
= X + iY

with X = (1 + x)S, Y = yS, S = x− 1

2
.

It follows, X2 = (1 + x)2S2, Y 2 = (1− x2)S2, X2 + Y 2 = 2(1 + x)S2, and then

(X2 + Y 2)2 + 3XY 2 −X3 = 0.

According to (9), that means Z = X + iY is a point of the curve C, as required.
In particular, if z is a cubic root of −1 then 1 + z3 = 0 and Z = 0. If z is a cubic
root of 1 then Z = z̄ and that is a cubic root of 1 as well.
Now let X and Y be the real and the imaginary parts of some point Z ∈ C.
Assume, this Z is a point of the right petal on the �gure and Z 6= 1. We have
X > 0 and X 6= 1. For every such X, there is a unique x ≥ −1 satisfying

(1 + x)S = X with S = x− 1

2
.

This x satis�es 1/2 < x < 1. Then we should take y satisfying Y = yS and to check
that x2 + y2 = 1. The point x+ iy is the only one ofD whose image is equal to Z.
This point belongs to the arc ofD that passes through 1 and whose endpoints are
exp(±πi/3). The points Z of another two petals can be treated similarly. �

Proposition 3. Let v = exp(it) and w = exp(it/3) with some t ∈ R. The image

ofD under the function

z 7→ 1 + vz3

2z
(11)

is the curve C ′ = wC obtained by rotation of C around 0 through the angle t/3.
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Proof. As the point z runs overD, the point wz runs overD and the point

1 + vz3

2z
= w

1 + (wz)3

2(wz)

runs over C ′ = wC by Proposition 2, as required. �

6. Distribution of the sums (3).

Now we are ready to give a theoretical explanation to the shown above distribution
of the sums Ep(ψ), see Section 1. Compare the formula (8) in Proposition 1 with the
formula (11) in Proposition 3. It follows from the Gauss formulas for the quadratic
sums that the only possible values of the coe�cient Q in (8) are either 1, ω, ω2 or
i, iω, iω2 according to p ≡ 1 mod 4 or p ≡ 3 mod 4. Here ω = exp(2πi/3), so that
1, ω, ω2 are all possible values of ψ(2). We �nd easily that any point Ep(ψ) in (3)
belongs to some of six curves wC obtained by rotation of C around 0 through the
angles w = 0, ±2π/9, π/6, π/2± π/9, so that

Ep(ψ) ∈ C̃ =
⋃
w

wC. (12)

This is consistent with the �gure presented in Section 1.
It remains an open question whether the countable set of all the points Ep(ψ)

is everywhere dense in the curve C̃ in (12). It seems likely that the set of all the

points Ep(ψ) is everywhere dense in C̃ (with the topology induced by the canonical
topology in C). In the meantime, the points T in Proposition 1 forms everywhere
dense subset in D. That is known from research of the cubic Gauss sums related
to the Kummer problem [5].
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