On pictures related to some exponential sums

N.V.Proskurin

Abstract. By numerical experiments with exponential sums in finite fields, it is discovered relation with flat curve known as Kepler trifolium. A theoretical explanation for this observation is given in the present paper.

0. Preliminaries.

Consider the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ of prime order p and a non-trivial character χ of its multiplicative group extended by setting $\chi(0) = 0$. Let e_p be the additive character

$$x \mapsto \exp(2\pi i x/p)$$

of \mathbb{F}_p . Given one-variable polynomials f, g over \mathbb{F}_p , consider the sum

$$\sum_{x \in \mathbb{F}_p} \chi(f(x)) e_p(g(x)).$$
(1)

That is an exponential character sum of mixed type, see [1]. Under some general assumptions on f, g and χ , one has

$$\sum_{x \in \mathbb{F}_p} \chi(f(x)) e_p(g(x)) \Big| \le (m+n-1)\sqrt{p}$$
(2)

with $n = \deg(g)$ and $m = \deg(\text{radical of } f)$, see [1] and [2]. In particular, let ψ be a cubic character and let f(x) = x, $g(x) = x^2$. This case (2) with $\chi = \psi$ implies that the sum

$$E_p(\psi) = \frac{1}{2\sqrt{p}} \sum_{x \in \mathbb{F}_p} \psi(x) e_p(x^2)$$
(3)

is located in the circle $D = \{z \in \mathbb{C} \mid |z| \leq 1\}$. We are interested in distribution of the points $E_p(\psi)$ in D. In the present paper we provide a theoretical explanation for our numerical experimental observations [4].

1. Numerical observations.

We have evaluated the sums $E_p(\psi)$ for all cubic characters ψ and for all prime $p \equiv 1 \mod 6$ subject to $p \leq 360000$. The assumption $p \equiv 1 \pmod{6}$ is included here just to ensure the existence of cubic characters. The following figure on complex plane \mathbb{C} represents the results originally reported in [4].

On this figure, it is shown the circle D, its boundary $\overline{D} = \{z \in \mathbb{C} \mid |z| = 1\}$, the real and imaginary axis, and some 18-petals flower. The boundary of the petals are formed by the points $E_p(\psi)$ with p and characters ψ as above. In that follows, we will recognise six copies of Kepler trifolium here.

2. Gauss sums.

The Gauss sums $G(\chi)$ are the ones (1) with f(x) = g(x) = x, so that

$$G(\chi) = \sum_{x \in \mathbb{F}_p} \chi(x) e_p(x).$$
(4)

For any prime p and non-trivial character χ one has

$$|G(\chi)|^2 = p \quad \text{and} \quad G(\chi)G(\bar{\chi}) = \chi(-1)p, \tag{5}$$

where $\bar{\chi}$ is the complex conjugation of χ . One say $G(\chi)$ is a quadratic, cubic or sextic sums according to χ is a character of order 2, 3 or 6.

By Gauss, for the quadratic character κ , the sum $G(\kappa)$ is equal to \sqrt{p} or $i\sqrt{p}$ according to $p \equiv 1 \mod 4$ or $p \equiv 3 \mod 4$.

To deal with cubic characters, assume $p \equiv 1 \mod 6$. This case we have two cubic characters, say ψ and $\bar{\psi}$, the quadratic character κ , and sextic characters $\kappa \psi$ and $\kappa \bar{\psi}$. The sextic sums can be evaluated (see theorem 3.1 in [3]) in terms of cubic and quadratic ones by the formula

$$G(\kappa\bar{\psi}) = \bar{\psi}(2)G(\kappa)G(\psi)^2/p.$$
(6)

For the cubic characters ψ one has $\psi(-1) = 1$, so that (5) implies

$$G(\bar{\psi}) = p/G(\psi). \tag{7}$$

exponential sums

3. Evaluation of sums (3) in terms of Gauss sums.

Consider the sum $E_p(\psi)$ in (3) with a cubic character ψ , $p \equiv 1 \mod 6$. One has $\psi(x) = \overline{\psi}(x^2)$ for all $x \in \mathbb{F}_p$ and

$$\sharp \{ x \in \mathbb{F}_p \mid x^2 = t \} = 1 + \kappa(t) \quad \text{for all} \quad t \in \mathbb{F}_p.$$

Recall, it is assumed $\kappa(0) = \psi(0) = 0$. It follows,

$$\begin{split} 2\sqrt{p} E_p(\psi) &= \sum_{t \in \mathbb{F}_p} \sharp \{ x \in \mathbb{F}_p \mid x^2 = t \} \bar{\psi}(t) e_p(t) \\ &= \sum_{t \in \mathbb{F}_p} \left(1 + \kappa(t) \right) \bar{\psi}(t) e_p(t) = G(\bar{\psi}) + G(\kappa \bar{\psi}). \end{split}$$

This can be rewritten as $2\sqrt{p}E_p(\psi) = p/G(\psi) + \bar{\psi}(2)G(\kappa)G(\psi)^2/p$, see (6) and (7), and finally as follows.

Proposition 1. For every prime $p \equiv 1 \mod 6$, one has

$$E_{p}(\psi) = \frac{1 + QT^{3}}{2T} \quad with \ T = G(\psi)/\sqrt{p}, \ Q = \bar{\psi}(2)G(\kappa)/\sqrt{p}.$$
(8)

Here ψ and κ are cubic and quadratic characters of \mathbb{F}_p and |T| = |Q| = 1. \Box

4. Kepler trifolium.

Consider the complex plane \mathbb{C} with the Cartesian coordinates $x = \operatorname{Re} z$, $y = \operatorname{Im} z$, $z \in \mathbb{C}$, the unit circle D centred at the origin 0, its boundary \overline{D} and the curve C

defined by the equation

$$(x^2 + y^2)^2 + 3xy^2 - x^3 = 0.$$
 (9)

This curve is known as Kepler trifolium and also as regular trifolium, three leaf/petal rose, three leaf/petal clover. It remains unchanged when rotated through the angles of $\pm 2\pi/3$ and it can be given by the polar equation $r = \cos(3\varphi)$, r being a point on the axis obtained by rotation of the real axis through the angle φ .

N. V. Proskurin

5. Parametrization.

Consider again the Kepler trifolium C. We intend to show that C can be parametrized by a rational function on \overline{D} . To be precise, we mean the complex function

$$z \mapsto \frac{1+z^3}{2z} \tag{10}$$

and its restriction to \overline{D} .

Proposition 2. The function (10) takes any point of \overline{D} to some point of C. In particular, it takes cubic roots of -1 to the triple point 0 of C. It takes cubic roots of 1 to the cubic roots of 1. Except for the point 0, every point of C is the image of an unique point of \overline{D} . The boundary of each petal is the image of someone arc in \overline{D} whose endpoints are the cubic roots of -1.

Proof. Let z = x + iy with real x and y. If $z \in \overline{D}$ then $x^2 + y^2 = 1$ and

$$\frac{1+z^3}{2z} = \frac{\bar{z}+z^2}{2} = X + iY$$
 with $X = (1+x)S$, $Y = yS$, $S = x - \frac{1}{2}$.

It follows, $X^2 = (1+x)^2 S^2$, $Y^2 = (1-x^2)S^2$, $X^2 + Y^2 = 2(1+x)S^2$, and then $(X^2 + Y^2)^2 + 3XY^2 - X^3 = 0.$

According to (9), that means Z = X + iY is a point of the curve C, as required. In particular, if z is a cubic root of -1 then $1 + z^3 = 0$ and Z = 0. If z is a cubic root of 1 then $Z = \overline{z}$ and that is a cubic root of 1 as well.

Now let X and Y be the real and the imaginary parts of some point $Z \in C$. Assume, this Z is a point of the right petal on the figure and $Z \neq 1$. We have X > 0 and $X \neq 1$. For every such X, there is a unique $x \geq -1$ satisfying

$$(1+x)S = X$$
 with $S = x - \frac{1}{2}$.

This x satisfies 1/2 < x < 1. Then we should take y satisfying Y = yS and to check that $x^2 + y^2 = 1$. The point x + iy is the only one of \overline{D} whose image is equal to Z. This point belongs to the arc of \overline{D} that passes through 1 and whose endpoints are $\exp(\pm \pi i/3)$. The points Z of another two petals can be treated similarly. \Box **Proposition 3.** Let $v = \exp(it)$ and $w = \exp(it/3)$ with some $t \in \mathbb{R}$. The image of \overline{D} under the function $z \mapsto \frac{1+vz^3}{v}$ (11)

$$\mapsto \frac{1+vz^3}{2z} \tag{11}$$

is the curve C' = wC obtained by rotation of C around 0 through the angle t/3.

Proof. As the point z runs over \overline{D} , the point wz runs over \overline{D} and the point

$$\frac{1+vz^3}{2z} = w\frac{1+(wz)^3}{2(wz)}$$

runs over C' = wC by Proposition 2, as required.

6. Distribution of the sums (3).

Now we are ready to give a theoretical explanation to the shown above distribution of the sums $E_p(\psi)$, see Section 1. Compare the formula (8) in Proposition 1 with the formula (11) in Proposition 3. It follows from the Gauss formulas for the quadratic sums that the only possible values of the coefficient Q in (8) are either 1, ω , ω^2 or $i, i\omega, i\omega^2$ according to $p \equiv 1 \mod 4$ or $p \equiv 3 \mod 4$. Here $\omega = \exp(2\pi i/3)$, so that 1, ω, ω^2 are all possible values of $\psi(2)$. We find easily that any point $E_p(\psi)$ in (3) belongs to some of six curves wC obtained by rotation of C around 0 through the angles $w = 0, \pm 2\pi/9, \pi/6, \pi/2 \pm \pi/9$, so that

$$E_p(\psi) \in \tilde{C} = \bigcup_w wC.$$
(12)

This is consistent with the figure presented in Section 1.

It remains an open question whether the countable set of all the points $E_p(\psi)$ is everywhere dense in the curve \tilde{C} in (12). It seems likely that the set of all the points $E_p(\psi)$ is everywhere dense in \tilde{C} (with the topology induced by the canonical topology in \mathbb{C}). In the meantime, the points T in Proposition 1 forms everywhere dense subset in \overline{D} . That is known from research of the cubic Gauss sums related to the Kummer problem [5].

References

- J.-P. Serre, Majorations de sommes exponentielles, Société Mathématique de France, Asterisque 41-42, 111-126 (1977).
- [2] S. A. Stepanov, Arithmetic of algebraic curves, Moscow, 1991 (in Russian). English translation: Springer-Verlag, 1995.
- [3] B. C. Berndt, R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, Journal of number theory 11, 349-398 (1979).
- [4] N. V. Proskurin, On exponential sums and flowers, Algebra and number theory 4, Zap. Nauchn. semin. POMI 502, 133-138 (2021) (in Russian).
- [5] D. R. Heath-Brown, S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310, 111-130 (1979).

N.V.Proskurin

St. Petersburg Department of Steklov Institute of Mathematics RAS e-mail: np@pdmi.ras.ru