On pictures related to some exponential sums

N. V. Proskurin, PDMI, St.-Petersburg

April 15, 2024

Preliminaries

Consider the field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ of prime order p and a non-trivial character χ of its multiplicative group extended by setting $\chi(0)=0$. Let e_{p} be the additive character

$$
x \mapsto \exp (2 \pi i x / p)
$$

of \mathbb{F}_{p}. Given one-variable polynomials f, g over \mathbb{F}_{p}, consider the sum

$$
\sum_{x \in \mathbb{F}_{p}} \chi(f(x)) e_{p}(g(x)) .
$$

That is an exponential character sum of mixed type. Under some general assumptions on f, g and χ, one has

$$
\left|\sum_{x \in \mathbb{F}_{p}} \chi(f(x)) e_{p}(g(x))\right| \leq(m+n-1) \sqrt{p}
$$

with $n=\operatorname{deg}(g)$ and $m=\operatorname{deg}($ radical of $f)$.

That means, the points

$$
\frac{1}{(m+n-1) \sqrt{p}} \sum_{x \in \mathbb{F}_{p}} \chi(f(x)) e_{p}(g(x))
$$

belongs to the unit circle $D=\{z \in \mathbb{C}| | z \mid \leq 1\}$.
We refer to J.-P. Serre (Asterisque 41-42, 1977) for review of general theory (involving multi-variable polynomials).
For given character χ and polynomials f and g, we may be interested in these points for all possible prime p and in distribution of these points within D.
We can take $f(x)=g(x)=x$ to get the classical Gauss sums

$$
G(\chi)=\sum_{x \in \mathbb{F}_{p}} \chi(x) e_{p}(x)
$$

for which a lot of beautiful formulas are known, say

$$
|G(\chi)|^{2}=p, \quad G(\chi) G(\bar{\chi})=\chi(-1) p \quad \text { and so on. }
$$

One say $G(\chi)$ is a quadratic, cubic or sextic sums according to χ is a character of order 2, 3 or 6 . The problem of evaluating the Gauss sums is extremely deep. By Gauss, for the quadratic character κ, the sum $G(\kappa)$ is equal to \sqrt{p} or $i \sqrt{p}$ according to $p \equiv 1 \bmod 4$ or $p \equiv 3 \bmod 4$. In the present lecture we consider the exponential sums

$$
E_{p}(\psi)=\frac{1}{2 \sqrt{p}} \sum_{x \in \mathbb{F}_{p}} \psi(x) e_{p}\left(x^{2}\right)
$$

attached to cubic characters ψ. The normalizing factor $2 \sqrt{p}$ is involved to ensure that

$$
E_{p}(\psi) \in D=\{z \in \mathbb{C}| | z \mid \leq 1\} .
$$

We are interested in distribution of the points $\boldsymbol{E}_{\boldsymbol{p}}(\psi)$ in the circle D.

Numerical observations

We have evaluated the sums $\boldsymbol{E}_{p}(\psi)$ for all cubic characters ψ and for all prime $p \equiv 1 \bmod 6$ subject to $p \leq 360000$. The assumption $p \equiv 1 \bmod 6$ is included to ensure the existence of cubic characters.

The real and imaginary axis on \mathbb{C}, the boundary \bar{D} of circle D,

$$
\bar{D}=\{z \in \mathbb{C}| | z \mid=1\} .
$$

The boundary of 18 -petals flower is formed by the points $E_{p}(\psi)$. We will recognise six copies of the Kepler trifolium here.

This flower is very exceptional and beautiful one. We find a lot of different pictures for other exponential sums. Samples:

Evaluation of $E_{p}(\psi)$ in terms of Gauss sums

To deal with the sums $E_{p}(\psi)$ and with cubic characters ψ, assume $p \equiv 1 \bmod 6$. This case we have two cubic characters ψ and $\bar{\psi}$, the quadratic character κ, and the characters $\kappa \psi$ and $\kappa \bar{\psi}$ of order six. Our first observation is that

$$
E_{p}(\psi)=\frac{1}{2 \sqrt{p}}\{G(\bar{\psi})+G(\kappa \bar{\psi})\} .
$$

To prove this formula, notice that $\sharp\left\{x \in \mathbb{F}_{p} \mid x^{2}=t\right\}=1+\kappa(t)$ for all $t \in \mathbb{F}_{p}$ and $\psi(x)=\bar{\psi}\left(x^{2}\right)$ for all $x \in \mathbb{F}_{p}$. We then have

$$
\begin{aligned}
& 2 \sqrt{p} E_{p}(\psi)=\sum_{t \in \mathbb{F}_{p}} \sharp\left\{x \in \mathbb{F}_{p} \mid x^{2}=t\right\} \bar{\psi}(t) e_{p}(t) \\
& \quad=\sum_{t \in \mathbb{F}_{p}}(1+\kappa(t)) \bar{\psi}(t) e_{p}(t)=G(\bar{\psi})+G(\kappa \bar{\psi}), \text { as claimed. }
\end{aligned}
$$

Our second observation is that the sextic Gauss sums can be evaluated in terms of cubic and quadratic ones by the formula

$$
G(\kappa \bar{\psi})=\bar{\psi}(2) G(\kappa) G(\psi)^{2} / p
$$

of B. C. Berndt and R. J. Evans (1979). Also, $G(\bar{\psi})=p / G(\psi)$. We obtain the following result.
Proposition 1. For every prime $p \equiv 1 \bmod 6$, one has

$$
E_{p}(\psi)=\frac{1+Q T^{3}}{2 T} \text { with } T=G(\psi) / \sqrt{p}, Q=\bar{\psi}(2) G(\kappa) / \sqrt{p}
$$

Here ψ and κ are cubic and quadratic characters of \mathbb{F}_{p} and $|T|=|Q|=1$.

Kepler trifolium.

Consider the complex plane \mathbb{C} with the coordinates $x=\operatorname{Re} z$, $y=\operatorname{Im} z, z \in \mathbb{C}$, the unit circle D centred at the origin 0 , its boundary \bar{D} and the curve C defined by the equation

$$
\left(x^{2}+y^{2}\right)^{2}+3 x y^{2}-x^{3}=0 .
$$

The C is known as the Kepler trifolium and also as the regular trifolium, the three leaf/petal rose, the three leaf/petal clover.

The curve C remains unchanged when rotated through the angles of $\pm 2 \pi / 3$. It can be given by the polar equation $r=\cos (3 \varphi), r$ being a point on the axis obtained by rotation of the real axis through the angle φ.

Parametrization of trifolium

The Kepler trifolium C can be parametrized by the rational function

$$
z \mapsto \frac{1+z^{3}}{2 z} \quad \text { on } \quad \bar{D}=\{z \in \mathbb{C}| | z \mid=1\}
$$

Our observation is as follows.
Proposition 2. The function above takes any point of \bar{D} to some point of C. It takes cubic roots of -1 to the triple point 0 of C. It takes cubic roots of 1 to the cubic roots of 1 . Except for the point 0 , every point of C is the image of an unique point of \bar{D}. The boundary of each petal is the image of someone arc in \bar{D} whose endpoints are the cubic roots of -1 .
All the statements can be proved by routine computation involving the equations defining \bar{D} and C.

For our purposes, we need to complete the parametrization with one more observation.
Proposition 3 Let $v=\exp (i t), t \in \mathbb{R}$. The image of \bar{D} under the function

$$
z \mapsto \frac{1+v z^{3}}{2 z}
$$

is $C^{\prime}=w C$ with $w=\exp (i t / 3)$. The curve C^{\prime} is obtained by rotation of C around 0 through the angle $t / 3$.
Indeed, as the point z runs over \bar{D}, the point $w z$ runs over \bar{D} also, and the point

$$
\frac{1+v z^{3}}{2 z}=w \frac{1+(w z)^{3}}{2(w z)}
$$

runs over $C^{\prime}=w C$ (by parametrization above), as claimed.

Distribution of the points $E_{p}(\psi)$

Now we are ready to give a theoretical explanation to our numerical observation on distribution of the sums $\boldsymbol{E}_{\rho}(\psi)$. Compare the function $z \mapsto \frac{1+v z^{3}}{2 z}$ in Proposition 3 with the formula $E_{p}(\psi)=\frac{1+Q T^{3}}{2 T}$ in Proposition 1. The z and T runs over $\bar{D}=\{z \in \mathbb{C}| | z \mid=1\}$.

The only possible values of Q are six numbers $1, \omega, \omega^{2}, i, i \omega, i \omega^{2}$ with $\omega^{3}=1$. It follows that any point $E_{p}(\psi)$ belongs to some of six curves w C obtained by rotation of C around 0 through the angles $w=0, \pm 2 \pi / 9, \pi / 6, \pi / 2 \pm \pi / 9$,

$$
E_{p}(\psi) \in \tilde{C}=\bigcup w C
$$

One concluding remark.
The points $T=G(\psi) / \sqrt{p}$ in Proposition 1 forms everywhere dense subset of the unit circle \bar{D}. That is known from research of the cubic Gauss sums related to the Kummer problem, D. R. Heath-Brown and S. J. Patterson (1979).

It seems likely that
the set of all the points $E_{p}(\psi)$ is everywhere dense in \tilde{C}.
That is an open question.

