On pictures related to some exponential sums

N. V. Proskurin, PDMI, St.-Petersburg

April 15, 2024

N. V. Proskurin, PDMI, St.-Petersburg On pictures related to some exponential s

April 15, 2024 1 / 13

Preliminaries

Consider the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ of prime order p and a non-trivial character χ of its multiplicative group extended by setting $\chi(0) = 0$. Let e_p be the additive character

$$x \mapsto \exp(2\pi i x/p)$$

of \mathbb{F}_p . Given one-variable polynomials f, g over \mathbb{F}_p , consider the sum

$$\sum_{x\in\mathbb{F}_p}\chi(f(x))e_p(g(x)).$$

That is an exponential character sum of mixed type. Under some general assumptions on f, g and χ , one has

$$\sum_{x\in\mathbb{F}_p}\chi(f(x))e_p(g(x))\Big|\leq (m+n-1)\sqrt{p}$$

with $n = \deg(g)$ and $m = \deg(\text{radical of } f)$.

N. V. Proskurin, PDMI, St.-Petersburg On pictures related to some exponential s

That means, the points

$$\frac{1}{(m+n-1)\sqrt{p}}\sum_{x\in\mathbb{F}_p}\chi(f(x))e_p(g(x))$$

belongs to the unit circle $D = \big\{ z \in \mathbb{C} \mid |z| \leq 1 \big\}.$

We refer to J.-P. Serre (Asterisque 41–42, 1977) for review of general theory (involving multi-variable polynomials).

For given character χ and polynomials f and g, we may be interested in these points for all possible prime p and in distribution of these points within D.

We can take f(x) = g(x) = x to get the classical Gauss sums

$$G(\chi) = \sum_{x \in \mathbb{F}_p} \chi(x) e_p(x)$$

for which a lot of beautiful formulas are known, say

$$|G(\chi)|^2 = p, \quad G(\chi)G(\bar{\chi}) = \chi(-1)p \text{ and so on.}$$

One say $G(\chi)$ is a quadratic, cubic or sextic sums according to χ is a character of order 2, 3 or 6. The problem of evaluating the Gauss sums is extremely deep. By Gauss, for the quadratic character κ , the sum $G(\kappa)$ is equal to \sqrt{p} or $i\sqrt{p}$ according to $p \equiv 1 \mod 4$ or $p \equiv 3 \mod 4$.

In the present lecture we consider the exponential sums

$$E_{p}(\psi) = \frac{1}{2\sqrt{p}} \sum_{x \in \mathbb{F}_{p}} \psi(x) e_{p}(x^{2})$$

attached to cubic characters ψ . The normalizing factor $2\sqrt{p}$ is involved to ensure that

$$E_{
ho}(\psi) \in D = \big\{ z \in \mathbb{C} \mid |z| \leq 1 \big\}.$$

We are interested in distribution of the points $E_p(\psi)$ in the circle D.

Numerical observations

We have evaluated the sums $E_p(\psi)$ for all cubic characters ψ and for all prime $p \equiv 1 \mod 6$ subject to $p \leq 360000$. The assumption $p \equiv 1 \mod 6$ is included to ensure the existence of cubic characters.

The real and imaginary axis on \mathbb{C} , the boundary \overline{D} of circle D, $\overline{D} = \{z \in \mathbb{C} \mid |z| = 1\}.$

The boundary of 18-petals flower is formed by the points $E_p(\psi)$. We will recognise six copies of the Kepler trifolium here. This flower is very exceptional and beautiful one. We find a lot of different pictures for other exponential sums. Samples:

April 15, 2024 6/13

Evaluation of $E_p(\psi)$ in terms of Gauss sums

To deal with the sums $E_p(\psi)$ and with cubic characters ψ , assume $p \equiv 1 \mod 6$. This case we have two cubic characters ψ and $\overline{\psi}$, the quadratic character κ , and the characters $\kappa\psi$ and $\kappa\overline{\psi}$ of order six. Our first observation is that

$$E_{\rho}(\psi) = \frac{1}{2\sqrt{\rho}} \big\{ G(\bar{\psi}) + G(\kappa \bar{\psi}) \big\}.$$

To prove this formula, notice that $\sharp\{x \in \mathbb{F}_p \mid x^2 = t\} = 1 + \kappa(t)$ for all $t \in \mathbb{F}_p$ and $\psi(x) = \overline{\psi}(x^2)$ for all $x \in \mathbb{F}_p$. We then have

$$2\sqrt{p}E_{p}(\psi) = \sum_{t\in\mathbb{F}_{p}} \sharp\{x\in\mathbb{F}_{p} \mid x^{2} = t\}\overline{\psi}(t)e_{p}(t)$$
$$= \sum_{t\in\mathbb{F}_{p}} (1+\kappa(t))\overline{\psi}(t)e_{p}(t) = G(\overline{\psi}) + G(\kappa\overline{\psi}), \text{ as claimed.}$$

N. V. Proskurin, PDMI, St.-Petersburg On pictures related to some exponential s

Our second observation is that the sextic Gauss sums can be evaluated in terms of cubic and quadratic ones by the formula

$$G(\kappa \overline{\psi}) = \overline{\psi}(2) G(\kappa) G(\psi)^2 / p.$$

of B. C. Berndt and R. J. Evans (1979). Also, $G(\bar{\psi}) = p/G(\psi)$. We obtain the following result.

Proposition 1. For every prime $p \equiv 1 \mod 6$, one has

$$E_p(\psi) = rac{1+QT^3}{2T}$$
 with $T = G(\psi)/\sqrt{p}$, $Q = \overline{\psi}(2)G(\kappa)/\sqrt{p}$.

Here ψ and κ are cubic and quadratic characters of \mathbb{F}_p and $|\mathcal{T}| = |\mathcal{Q}| = 1$.

N. V. Proskurin, PDMI, St.-Petersburg On pictures related to some exponential s

April 15, 2024 8 / 13

Kepler trifolium.

Consider the complex plane \mathbb{C} with the coordinates $x = \operatorname{Re} z$, $y = \operatorname{Im} z$, $z \in \mathbb{C}$, the unit circle D centred at the origin 0, its boundary \overline{D} and the curve C defined by the equation

$$(x^2 + y^2)^2 + 3xy^2 - x^3 = 0.$$

The C is known as the Kepler trifolium and also as the regular trifolium, the three leaf/petal rose, the three leaf/petal clover.

The curve C remains unchanged when rotated through the angles of $\pm 2\pi/3$. It can be given by the polar equation $r = \cos(3\varphi)$, r being a point on the axis obtained by rotation of the real axis through the angle φ .

April 15, 2024

9/13

Parametrization of trifolium

The Kepler trifolium C can be parametrized by the rational function

$$z\mapsto rac{1+z^3}{2z} \quad ext{on} \quad \overline{D}=\{z\in\mathbb{C}\,|\,|z|=1\}$$

Our observation is as follows.

Proposition 2. The function above takes any point of \overline{D} to some point of C. It takes cubic roots of -1 to the triple point 0 of C. It takes cubic roots of 1 to the cubic roots of 1. Except for the point 0, every point of C is the image of an unique point of \overline{D} . The boundary of each petal is the image of someone arc in \overline{D} whose endpoints are the cubic roots of -1.

All the statements can be proved by routine computation involving the equations defining \overline{D} and C.

April 15, 2024

10/13

For our purposes, we need to complete the parametrization with one more observation.

Proposition 3 Let $v = \exp(it)$, $t \in \mathbb{R}$. The image of \overline{D} under the function

$$z\mapsto rac{1+vz^3}{2z}$$

is C' = wC with $w = \exp(it/3)$. The curve C' is obtained by rotation of C around 0 through the angle t/3.

Indeed, as the point z runs over \overline{D} , the point wz runs over \overline{D} also, and the point

$$\frac{1+vz^3}{2z} = w \frac{1+(wz)^3}{2(wz)}$$

runs over C' = wC (by parametrization above), as claimed.

April 15, 2024

11/13

Distribution of the points $E_p(\psi)$

Now we are ready to give a theoretical explanation to our numerical observation on distribution of the sums $E_p(\psi)$. Compare the function

 $z \mapsto \frac{1+vz^3}{2z}$ in Proposition 3 with the formula $E_p(\psi) = \frac{1+QT^3}{2T}$ in Proposition 1. The z and T runs over $\overline{D} = \{z \in \mathbb{C} \mid |z| = 1\}$.

N. V. Proskurin, PDMI, St.-PetersburgOn pictures related to some exponential

April 15, 2024 12 / 13

One concluding remark.

The points $T = G(\psi)/\sqrt{p}$ in Proposition 1 forms everywhere dense subset of the unit circle \overline{D} . That is known from research of the cubic Gauss sums related to the Kummer problem, D. R. Heath-Brown and S. J. Patterson (1979).

It seems likely that

the set of all the points $E_p(\psi)$ is everywhere dense in \hat{C} . That is an open question.