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The Euler top and the Lagrange top

as two special cases of the Galois top

Semjon Adlaj

The MacCullagh ellipsoid of inertia is transformed if we relocate its centre
along the Galois axis [7, 8, 9, 11, 13, 14, 15]. The two principal axes,
corresponding to extreme moments of inertia would rotate (with respect to rigid
body reference frame), whereas the direction of the principal axis, corresponding
to the intermediate moment of inertia is preserved (remaining orthogonal to the
Galois axis). The latter (newly emerging, rotated and rescaled)1 MacCullagh
ellipsoid of inertia shares the same Galois axis with the former ellipsoid. We have
thus ensured that the Galois top, that is, a heavy top in a uniform gravitational
�eld which �xed point lies at a Galois axis, is well-de�ned.

The Euler top and the Lagrange top are thereby seen as two special cases
of the Galois top. The Euler top corresponds to the special case of the Galois
top which �xed point coincides with its centre of mass, whereas the Lagrange top
corresponds the special case of the Galois top which Galois axis coincides with a
principal axis of inertia, that is, the case where two principal moments of inertia
did coincide one with the other.2

The Galois essential and alternative elliptic functions, which were discussed
in [1, 2, 3, 4, 5, 6, 10, 12, 14], provide the natural means for constructing explicit
solutions to both Euler top and Lagrange top, as well as, vividly exhibiting their
symmetries.
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On multidimensional analogs of Euler (Tait-Bryan)
angles and Grassmanians.

M. V. Babich, L. A. Bordag, A. Khvedelidze and D. Mladenov

Abstract. The position of a frame in R3 can be parametrized by the famous

Euler angles: precession represents a rotation around the z axis, nutation

represents a rotation around theN or x′ axis, and intrinsic rotation represents

a rotation around the Z or z′′ axis.
Another angles were introduced in last of XIX by P. G. Tait and G. H. Bryan.

The angles are called yaw, pitch, and roll and are used in the aerospace tech-

nique now. Yaw axis z is a vertical axis, pitch axis y is a horizontal axis

running from left to right parallel to the wings of a winged aircraft, and roll

axis is a longitudinal axis x, an axis drawn from tail to nose.

I will demonstrate that it is the Tait-Bryan parametrization that can be

generalized on the case of the spliting of a space RN or CN on the orthogonal

subspaces of arbitrary dimensions.

M. V. Babich

POMI RAN

St.Petersburg, Russia

e-mail: mbabich@pdmi.ras.ru

L. A. Bordag

LIT, Dubna

A. Khvedelidze

LIT, Dubna

D. Mladenov

LIT, Dubna
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On parametrization of orthogonal symplectic ma-
trices and its applications

Alexander Batkhin and Alexander Petrov

Abstract. The method of computing the parametric representation of an or-
thogonal symplectic matrix is considered. The dimension of the family of such
matrices is calculated. The general structure of matrices of small even dimen-
sions up to 8 is discussed in detail. A conjecture on the structure of a skew
symmetric matrix generating a generic orthogonal symplectic transformation
is formulated. The problem of constructing an orthogonal symplectic matrix of
dimension 4 by a given vector is solved. The application of this transformation
to the study of families of periodic solutions of an autonomous Hamiltonian
system with two degrees of freedom is discussed.

1. Introduction
While studying the phase flow of a non-integrable Hamiltonian system, it is usually
assumed that there is some information about its invariant varieties: equilibrium
positions, periodic solutions or invariant tori of different dimensions. In this case,
one can compute the normal form of the system near the corresponding variety
and use it to obtain information on the stability of this variety, local integrability
in its vicinity, the nature of bifurcations at small changes of parameters and, under
certain conditions, asymptotically integrate the normalized system of equations.

For studying dynamics near invariant varieties of dimension greater than zero,
the normalization technique is less well developed. Here, either a Poincaré mapping
reduces a continuous-time Hamiltonian system to a mapping that preserves the
phase volume, or a special coordinate transformation is performed to simplify the
study of phase flow. Successful continuation along the family requires the compu-
tation of normal and tangent displacements. Previously, such displacements were
computed by reducing the system to Birkhoff normal form, which implied addi-
tional computational cost. Then variants of the method appeared, when at each

The second author was supported by the Government program (contract 124012500443-0)
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2 Alexander Batkhin and Alexander Petrov1

step of integration along the periodic solution an orthogonal-symplectic transfor-
mation was performed [1, 2], or integration was performed in the Fresné basis [3].
Later, in a series of papers by Kreisman [4, 5], it was shown that it is sufficient
to do such a transformation once after the monodromy matrix of the periodic so-
lution has been computed. In presented paper we provide a general algorithm of
computation of an generic orthogonal symplectic matrix (or simply OSM) of any
even dimension and gives more precise description of their structure dimension
equals to 4.

2. General form of orthogonal-symplectic matrix
Hereafter, Bn denotes a square real matrix of dimension 2n × 2n; En and E are
unit matrices of dimension n × n and 2n × 2n, respectively. The sign ⊤ denotes
the transpose operation of a matrix or vector.

Let us state a theorem that allows to parametrize an OSM of a general form

A⊤
nAn = E, A⊤

n JAn = J.

Theorem 1 ([6]). A matrix An is symplectic if and only if the matrix Ψn

Ψn = −2J(E+An)
−1(An −E), J =

(
0 En

−En 0

)
(1)

is symmetric.

In fact, Theorem 1 allows us to constructively build a matrix An that is both
orthogonal and symplectic. Such a class of matrices turns out to be very useful in
the study of families of periodic solutions of Hamiltonian systems, and for critical
solutions it allows to determine the type of bifurcation of the family (for details
see [5, 7]).

According to Theorem 1 the computations can organized as follows.
1. Define an arbitrary skew symmetric matrix Kn of size 2n × 2n, which is

uniquely defined by n(2n− 1) elements.
2. Compute the orthogonal matrix An by the Cayley-like formula

An = (E+Kn) (E−Kn)
−1
, (2)

which is always possible due to the fact that a skew symmetric matrix Kn

does not have non-zero real eigenvalues.
3. By (1) we get the expression of the matrix Ψn through the matrix Kn.
4. Using the symmetry condition Ψ⊤

n = Ψn, we obtain a system of relations
between the elements of the matrix Kn.

5. According to Theorem 1 the matrix An is symplectic.

Theorem 2. The number of independent elements of the matrix Kn, which defines
by Cayley’s formula (2) the symplectic matrix An, is equal to n2. The number of
relations between the elements of the matrix Kn is n(n− 1).

13



On parametrization of orthogonal symplectic matrices 3

3. Representation of OSMs for n = 2

Let the matrix K2 be of the form K2 =

(
0 k1 k2 k3

−k1 0 k4 k5

−k2 −k4 0 k6

−k3 −k5 −k6 0

)
. Carrying out the

calculations of items 1–3, we obtain that for the matrix A2 to be symplectic, two
conditions should be fulfilled:

k4 = k3, k6 = k1. (3)

Hence, we obtain a matrix K2 of the form

K2 =




0 k1 k2 k3
−k1 0 k3 k5
−k2 −k3 0 k1
−k3 −k5 −k1 0


 =

(
B C
−C B

)
. (4)

Here B is a skew symmetric 2× 2 matrix and C is a symmetric 2× 2 matrix.
According to Theorem 2 there is a four-parameter family of OSMs A2. Their

structure can be described as follows. Let us denote by A
(j)
2 , j = 1, . . . , 4, the jth

column of the matrix A2. Then the following conditions hold.

1. Each column of A(j)
2 is a unit vector.

2. All columns are pairwise orthogonal.
3. A

(j)
2 = JA

(j+2)
2 or A

(j+2)
2 = −JA

(j)
2 for j = 1, 2.

4. Let us put the following notations: Q def
= k21−k2k5+k23, R2 def

= 2k21+k
2
2+2k23+

k25, then the first two columns are

A
(1)
2 =

1

d2




1 + k25 − k22 −Q2

−2k1(1 +Q)− 2k3(k5 + k2)
−2k2 + 2k5Q

−2k3(1 +Q) + 2k1(k5 + k2)


 ,

A
(2)
2 =

1

d2




2k1(1 +Q)− 2k3(k5 + k2)
1− k25 + k22 −Q2

−2k3(1 +Q)− 2k1(k5 + k2)
−2k5 + 2k2Q




(5)

where d2 = (k2 + k5)
2 + (1 +Q)2 = R2 +Q2 + 1. Here d2 = det(E−K2).

5. Columns A
(3)
2 and A

(4)
2 are obtained according to the property 3.

Consider the following particular problem.

Problem. Let a monodromy matrix M2 of a periodic solution z(t, z0) with period
T of an autonomous Hamiltonian system with two degrees of freedom be known.
Find such an orthogonal-symplectic transformation given by the matrix Ã2 that
reduces the matrix M2 to a simpler form.

14



4 Alexander Batkhin and Alexander Petrov2

Applying Gröbner basis technique one can deduce from (5) that the first two
columns of the matrix Ã2 take the form of

Ã
(1)
2 =

1

d̃




1− Q̃
−2k1
−2k2
−2k3


 , Ã

(2)
2 =

1

d̃




2k1
1− Q̃
−2k3
2k2


 , d̃ = 1 + Q̃. (6)

Let some non degenerate periodic solution z(t, z0) of a family with initial
condition z0 and period T be known. In a generic case, there is a periodic solution
z(t) + δz(t) with period T + δT near the generic case. Decomposing the left-hand
side of the periodicity condition z(T + δT, z0 + δz) = z0 + δz into a Taylor series,
leaving in the expansion terms not higher than the first order of smallness for
δz and δT , we obtain that small additives of δz and δT should satisfy a linear
homogeneous system

(M2 −E)δz(T ) + v0δT = 0, (7)
where v0 = J gradH(z(T, z0)). The set of solutions to this system is determined
by the structure of the monodromy matrix M.

The vectors v0 and −Jv0 are, respectively, the right and left eigenvectors of
the matrix M2, then the transformation M2 → Ã⊤

2 M2Ã2 reduces [5] the matrix

M to the symplectic matrix N2 =

( 1 n12 n13 n14
0 n22 n23 n24
0 0 1 0
0 n42 n43 n44

)
. If we now substitute the vari-

ables δζ = Ã2δz, then the system (7) is written as (N2−E)δζ(T )+v0δT Ã
(1)
2 = 0,

where v0 is the magnitude of the phase velocity at the initial point z0 of the pe-
riodic solution. This system has a general solution in the form δζ = c1Ã

(1)
2 + δζ′,

δT = − 1
v

∑4
j=2 n1jδζ

′
j , and the vector δζ′ is orthogonal to the vector Ã

(1)
2 . So δζ′

specifies the displacement along the family of periodic orbits and Ã
(1)
2 specifies

the displacement along the periodic solution.

4. General structure of an arbitrary OSM
Generalizing the computations performed for cases n = 1, 2, 3, 4, we can formulate
the following conjecture.

Conjecture. If a skew symmetric matrix Kn has the form

Kn =

(
B C

−C⊤ D

)
, B⊤ = −B, D⊤ = −D,

then the matrix Ψn = −2J(E + An)
−1(E − An) has the following form Ψn =

−2

(
C⊤ D⊤

B C

)
, where An = (E+Kn)(E−Kn)

−1.

It follows from the conjecture that in order for the matrix Ψn to be symmet-
ric, the conditions C = C⊤ and B = D should be satisfied. Thus, according to
Theorem 1, the following statement is obtained:
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On parametrization of orthogonal symplectic matrices 5

Statement. If the matrix Kn is a block matrix Kn =

(
B C
−C B

)
, with B is a

skew symmetric n × n matrix of n(n − 1)/2 independent elements and C is a
symmetric n × n matrix of n(n + 1)/2 independent elements, then the matrix
An = (E +Kn)(E −Kn)

−1 is a generic orthogonal symplectic matrix of n2
independent elements.
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Teaching Fractals with Technology

Keston Bhola, Thierry Dana-Picard, Jurell Benjamin, Kester

Roberts, Cheddi Bernard and Tatiana Mylläri

Abstract. We present our project on teaching fractals with technology and

give some examples.

Introduction

Modern technology changes radically the way of teaching natural sciences. Using
technology, same course could be taught on di�erent levels of complexity. We
present our project on teaching fractals with technology. Fractals are chosen as
an example since they are very attractive visually and are encountered in many
branches of natural sciences and applications.

Using computer tools (from basic demo software and turtle graphics to CAS
and JAVA/Python codes), course with the same topics can be taught on di�erent
levels, from primary school to graduate and post-graduate level. It is also possi-
ble to present material to students with wide spectrum of age and mathematical
background.

We give some examples and discuss our experience of teaching/demonstrating
fractals to primary school students and to school teachers.

Keston Bhola

SAS

St.George's University

St.George's, Grenada, West Indies

e-mail: KBhola001@sgu.edu

Thierry Dana-Picard

Jerusalem College of Technology

Jerusalem, Israel

e-mail: ndp@jct.ac.il

17



2Keston Bhola, Thierry Dana-Picard, Jurell Benjamin, Kester Roberts, Cheddi Bernard and Tatiana Mylläri

Jurell Benjamin

New York University

665 Broadway, Suite 906

New York, NY 10003, USA

e-mail: jurell.benjamin@nyu.edu

Kester Roberts

SAS

St.George's University

St.George's, Grenada, West Indies

e-mail: krobert7@sgu.edu

Cheddi Bernard

SAS

St.George's University

St.George's, Grenada, West Indies

e-mail: cbernard@sgu.edu

Tatiana Mylläri

SAS

St.George's University

St.George's, Grenada, West Indies

e-mail: tmyllari@sgu.edu

18



Compact first-order differential approximations:
a case study of the Korteweg-de Vries equation

Yuri A. Blinkov

Abstract. On the example of the first-order differential approximation, a
qualitative study was conducted for the Crank-Nicolson-type scheme for the
Korteweg-de Vries equation. This made it possible to qualitatively assess the
method’s truncation error and propose simple criteria for selecting the time
step and spatial step during calculations. The presented methods make it pos-
sible to carry out effective calculations using computer algebra systems. For
the research, author’s programs for working with the first-order differential
approximation, implemented in the computer algebra system SymPy, were
used.

In the 1960s of the last century, N. N. Yanenko and Yu. I. Shokin [1] formu-
lated the method of differential approximations for the difference scheme. First-
order differential approximation (FDA) for partial differential equations of evolu-
tionary type and, in particular, the Korteweg-de Vries equation using computer
algebra systems is considered in [2], and for the Navier-Stokes equations in [3].

In this work, the Korteweg-de Vries equation (1)

ut + 6uux + uxxx = 0 (1)

is chosen as a demonstrator of FDA for investigating difference schemes. Soliton
solutions of the Korteweg-de Vries equation are those that describe wave prop-
agation in nonlinear media. The soliton solution (2) represents a traveling wave
ξ = k(x−4k2t) depending on the parameter k, which propagates without changing
its shape and amplitude

u =
2k2

cosh2 ξ
(2)
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2 Yuri A. Blinkov

In this work, we will investigate a second-order scheme with respect to h [2]

un+1
j − unj

τ
+

3

4h

((
u2

n+1
j+1 − u2

n+1
j−1

)
+
(
u2

n
j+1 − u2

n
j−1

))
+

+
1

4h3
((
un+1
j+2 − 2un+1

j+1 + 2un+1
j−1 − un+1

j−2

)
+

+
(
unj+2 − 2un+1

j + 2unj−1 − unj−2

))
= 0. (3)

Constructing FDA uses only algebraic operations and can be effectively im-
plemented algorithmically using computer algebra tools. The author’s program
is implemented in the open-source computer algebra system SymPy (https://
www.sympy.org) and can be downloaded at https://github.com/blinkovua/
sharing-blinkov/blob/master/KDV_FDA_Crank-Nicolson.ipynb.

Algorithmically, the application of the Gröbner basis construction algorithm
for constructing FDA can be represented as working with an infinite module with
the POT ordering (position over term - ordering first by dependent variables and
then by independent variables), where the role of position is played by time steps τ
and space steps h. In this case, calculations are carried out up to the first non-zero
members of the series in τ and h.

Lexicographic ordering. Initially, the FDA method was a decomposition of
the difference scheme (3) into a Taylor series expansion in the central point of the
difference scheme template at the point (τ/2, 0) which would have the following
form

6uux + ut + uxxx + h2
(
uuxxx +

uxxxxx
4

+ 3uxxux

)
+

+ τ2
(
3uuttx

4
+
uttt
24

+
uttxxx

8
+

3uttux
4

+
3utxut

2

)
+ . . . = 0 (4)

Since the formal Taylor series (4) is equal to zero, its linear combination with
itself and its differential consequences will also be equal to zero. This can be
taken advantage of and brought to a canonical form that can be used to study the
properties not only of difference schemes for linear equations but also for nonlinear
ones [1].

In the works [1], evolutionary type equations were studied. This allowed the
transformation of the formal Taylor series (4) by replacing all derivatives with
respect to time through spatial derivatives

6uux + ut + uxxx + h2
(
uuxxx +

uxxxxx
4

+ 3uxxux

)
+

+ τ2
(
18u3uxxx + 9u2uxxxxx + 162u2uxxux +

3uuxxxxxxx
2

+

+63uuxxxxux + 99uuxxxuxx + 108uu3x +
uxxxxxxxxx

12
+ 6uxxxxxxux+

+
27uxxxxxuxx

2
+ 21uxxxxuxxx + 81uxxxu

2
x + 99u2xxux

)
+ . . . = 0 (5)
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Compact first-order differential approximations 3

The canonical form (5) obtained by replacing all derivatives with respect to time
through spatial derivatives allows, firstly, to precisely determine the order of the
difference scheme, and secondly, it allows to draw certain conclusions about such
properties of difference schemes as stability, approximation, accuracy, monotonic-
ity, conservativeness, group properties, etc. [1].

Replacing all derivatives with respect to time through spatial derivatives
corresponds to the construction of Groebner basis with lexicographical ordering
first by t and then by x (t � x).

Since knowing the Taylor series expansion in a selected point, one can use
it to formally recalculate the derivatives of the sought function (in this case, the
differential equation) in another selected point. Therefore, the choice of the point
for the FDA expansion does not matter, which is required for the canonical repre-
sentation. For example, let us consider the expansion of the difference scheme (3)
into a Taylor series at the point (τ,−h)

6uux + ut + uxxx + h
(
6uuxx + utx + uxxxx + 6u2x

)
+

+ h2
(
4uuxxx +

utxx
2

+
3uxxxxx

4
+ 12uxxux

)
+

+ τ
(
−3uutx −

utt
2
− utxxx

2
− 3utux

)
+

+ τh
(
−3uutxx −

uttx
2
− utxxxx

2
− 6utxux − 3utuxx

)
+

+ τ2
(
3uuttx

2
+
uttt
6

+
uttxxx

4
+

3uttux
2

+ 3utxut

)
+ . . . = 0 (6)

In the expansion (6), it is seen that the members of the series at τ , τh are simple
differential consequences of the original equation (1). At higher-order terms of the
expansion, besides the original equation, the lower-order members of the original
expansion may also be involved. The construction of the Groebner basis reduces
the series (6) to the form (5).

The choice of the point for the expansion affects only the amount of calcu-
lations, taking into account the nonlinearity of the equations, the high order of
the applied derivatives, and symbolic parameters of the problem. A much greater
reduction in the amount of calculations can be achieved by performing the calcu-
lation not in lexicographical ordering, but in ordering by total degree, and then in
reverse lexicographical (degrevlex – degree reverse lexicographic).

Degrevlex ordering. The initial Taylor series expansion does not depend on
the ordering, but depends only on the point of expansion. Therefore, using expan-
sion (4) or expansion (6) in the degrevlex ordering, we obtain a more compact,
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4 Yuri A. Blinkov

compared to (5), version of FDA.

6uux + ut + uxxx + h2
(
3u2ux +

uut
2
− utxx

4
− 3uxxux

2

)
+

+ τ2
(
−uttt

12

)
+ . . . = 0 (7)

In this specific case, we can obtain this form even in lexicographical ordering by
swapping the order of variables x � t, but the approach based on the use of
degrevlex ordering in most cases gives the most compact form of FDA or close to
it, and it is less dependent on the choice of variable order.

Symbolic experiments. Despite their very cumbersome appearance, especially
in lexicographical ordering, the first differential approximations can be effectively
checked against exact solutions. More precisely, FDA, when substituted with the
exact solution, allows us to evaluate the scheme itself without programming it and
conducting computational experiments to check it.

Let’s substitute the exact solution (2) into FDA (5) or (7) to get the following
form of FDA

h2
(
−8k7 (tanh ξ − 1) (tanh ξ + 1)×
×
(
15 tanh4 ξ − 16 tanh2 ξ + 3

)
tanh ξ

)
+ τ2

(
−256k11 (tanh ξ − 1)×

× (tanh ξ + 1)
(
3 tanh2 ξ − 2

)
tanh ξ/3

)
+ . . . = 0 (8)

Since ξ represents a running wave, and the value of hyperbolic tangent lies in
the interval from −1 to 1, the main contribution to the truncation error of the
difference scheme (3) on the exact solution (2) can be represented in the form of
O(τ2k11, h2k7).
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Asymptotic expansions of a manifold near its curve

of singular points

Alexander Bruno and Alijon Azimov

Abstract. In [1�3] parametric expansions near 5 singular points and 3 curves
consisting of singular points were computed for a two-dimensional algebraic
manifold Ω. Here we present general methods for computing the expansions
of a manifold near its curve of singular points and their application to a single
curve F .

1. Introduction

In [4�8] the study of the three-parameter family of special homogeneous spaces in
terms of the normalized Ricci �ow was started. Ricci �ows give the evolution of
Einstein metrics on a manifold. The equation of the normalized Ricci �ow reduces
to a system of two ordinary di�erential equations with three parameters a1,a2 and
a3:

dx1
dt

= f̃1(x1, x2, a1, a2, a3),

dx2
dt

= f̃2(x1, x2, a1, a2, a3),

(1)

where f̃1 and f̃2 are some concrete functions.

The singular points of this system correspond to Einstein invariant metrics.
At a singular (�xed) point x01, x

0
2 the system (1) has two eigenvalues λ1 and λ2. If

at least one of them is equal to zero, the singular point x01, x
0
2 is called degenerate.

In [4�8] a theorem is proved that the set Ω of values of parameters a1, a2, a3, at
which the system (1) has at least one degenerate singular point is described by the
equation

23



2 Alexander Bruno and Alijon Azimov

Q(s1, s2, s3)
def≡ (2s1 + 4s3 − 1)

(
64s51 − 64s41 + 8s31 + 240s21s3 − 1536s1s

2
3−

−4096s33 + 12s21 − 240s1s3 + 768s23 − 6s1 + 60s3 + 1
)
−

− 8s1s2(2s1 + 4s3 − 1)(2s1 − 32s3 − 1)(10s1 + 32s3 − 5)−
− 16s21s

2
2

(
52s21 + 640s1s3 + 1024s23 − 52s1 − 320s3 + 13

)
+

+ 64(2s1 − 1)s32(2s1 − 32s3 − 1) + 2048s1(2s1 − 1)s42 = 0,

where s1, s2, s3 are elementary symmetric polynomials, equal, respectively, to

s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.

In [9] for symmetry reasons, from coordinates a = (a1, a2, a3) authors passed to
the coordinates A = (A1, A2, A3) by linear substitution



a1
a2
a3


 =M ·



A1

A2

A3


 , M =



(1 +

√
3)/6 (1−

√
3)/6 1/3

(1−
√
3)/6 (1 +

√
3)/6 1/3

−1/3 −1/3 1/3




De�nition 1. Let φ (X) be some polynomial, X = (x1, . . . , xn). Point X = X0 of
the set φ (X) = 0 is called a singular point of k-order, if in this point all partial
derivatives of the polynomial φ (X) by x1, . . . , xn go to zero up to k-th order and
at least one partial derivative of order k + 1 does not go to zero.

In [9] all singular points of the manifold Ω were found in coordinates A =
(A1, A2, A3). Five third-order points,

Name Coordinates A

P
(3)
1 (0, 0, 3/4)

P
(3)
2 (0, 0,−3/2)

P
(3)
3

(
− 1+

√
3

2 ,
√
3−1
2 , 12

)

P
(3)
4

(√
3−1
2 ,− 1+

√
3

2 , 12

)

P
(3)
5 (1, 1, 1/2)

three second-order points,

Name Coordinates A

P
(2)
1

(
1+

√
3

4 , 1−
√
3

4 , 12

)

P
(2)
2

(
1−

√
3

4 , 1+
√
3

4 , 12

)

P
(3)
2 (1, 1, 1/2)
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Asymptotic expansions of a manifold 3

and three more algebraic curves of singular points of �rst order

F =
{
a1 = a2, 16a

3
1 + 16a21a3 − 4a1 − 2a3 + 1 = 0

}
,

I =

{
A1 +A2 + 1 = 0, A3 =

1

2

}
,

K =

{
A1 = −9

4
th (t) , A2 = −9

4
h (t) , A3 =

3

4
, h (t) =

t2 + 1

(t+ 1)(t2 − 4t+ 1)

}
.

In this case, the points P
(3)
3 , P

(3)
4 and P

(3)
5 are of the same type, they pass

into each other at rotation around the origin of the plane A1, A2 by an angle

2π/3, just as all points P
(2)
1 , P

(2)
2 , P

(2)
3 . The curves F , I, K correspond to two

more curves of the same type. Therefore, it is enough to study the manifold Ω

in the neighborhoods of the points P
(3)
1 , P

(3)
2 , P

(3)
5 , P

(2)
3 and curves F , I and K.

Moreover, in [9] the cross sections of the manifold Ω by the planes A3 = const, were
calculated and it was shown that in a �nite part of the space R3 = {A1, A2, A3} the
manifold Ω consists of one-dimensional branches F1, F2, F3, and two-dimensional
branches G1, G2, G3 which are broken into parts F±

i , G±
i with boundaries at the

plane A3 = 1/2.

The structure of the manifold Ω near singular points P
(3)
i and P

(2)
i was

considered in [1,2]. The structure of the manifold Ω near three algebraic curves I,
K, F of singular points of the �rst order was considered in [3]. For this study, we
use the following algorithm consisting of 8 steps.

2. Calculation scheme

Step 1: Introduce local coordinates X = (x1, x2, x3). If we consider a straight
line consisting of singular points (as I), then one coordinate x1 is directed
along the line and coordinates x2,x3 describe deviations from the line. If
the curve is located on a plane, we introduce the coordinate x3, normal to
this plane, coordinates x1,x2 of the curve on the plane are parameterized
x1 = b1(t), x2 = b2(t) and a coordinate y2 = x2 − b(t) of the deviation from
this curve.

Step 2: The original polynomial R(A) write in local coordinates as

g(t, y2, x3) =
∑

φ(t)pqy
p
2x

q
3, (2)

and compute its support S = {(p, q) : φpq ̸≡ 0}. Let the support S consists
of points (pi, qi), i = 1, . . . , k.

Step 3: Newton's polygon Γ(g) is calculated as a convex hull of the support S:

Γ(g) =

{
(p, q) =

k∑

i=1

λi(pi, qi), λi ⩾ 0, i = 1, . . . , k,
k∑

i=1

λi = 1

}
.
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Boundary ∂Γ of polygon Γ(g) consists of its vertices Γ
(0)
j and edges Γ

(1)
j which

we call as generalized faces. Here j is the number of the generalized face Γ
(d)
j .

Each face Γ
(d)
j corresponds to its truncated polynomial

ĝ
(d)
j (Y ) =

∑
g(p,q)y

p
2x

q
3 over (p, q) ∈ S ∩ Γ

(d)
j

and the normal cone U
(d)
j , consisting of all normals to the face Γ

(d)
j , which

are the external normals to the polygon Γ. For their computation we use
PolyhedralSets of the computer algebra system (CAS) Maple package [10].

Step 4: Select the faces Γ
(1)
j with normals Nj ⩽ 0 and corresponding truncated

polynomials ĝ
(1)
j (t, y2, x3).

Step 5: For each selected truncated polynomial ĝ
(1)
j (t, y2, x3), we calculate the

corresponding power transformations

(ln y2, lnx3) = (ln z1, ln z3)α, (3)

where α is such a unimodular matrix 2× 2, that

ĝ
(1)
j (t, y2, x3) = h(z1, t)z

l
3 (4)

with a multiplier zl3.
Step 6: We make the power transformation (3) in the polynomial (2) itself and

write it in the following form

g(Z) = T (z1, t, z3) = zl3

m∑

k=0

Tk(z1, t)z
k
3 ,

with some natural number m. The polynomial Tk(z1, t) is calculated by the
command coeff(T,z[k],m) in CAS Maple, and T0(z1, t) = h(z1, t) from
Equality (4).

Step 7: If T0(z1(t), t) ̸≡ 0, then we substitute in the polynomial T (z1, t, z3)z
−l
3

z1 = b1(t) + ε, z2 = b2(t) + ε (5)

and obtain the function u(ε, t, z3) = T (z1, z2, z3)z
−l
3 . Now we apply to the

equation u(ε, t, z3) = 0 Theorem 1 [1] on the generalized implicit function
and obtain the parametric expansion

ε =
∞∑

k=1

ck(t)z
k
3 . (6)

Step 8: Calculate several terms of expansion (6) and substitute them into (5).
The result is substituted into the power transformation (3) and we obtain the
parametric expansion of Ω into a power series by z3, with coe�cients which
are rational functions of the t.
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3. Structure of the manifold Ω near the Curve F of singular points

Theorem 1. The curve F consists of branches F±
1 ,F±

2 ,F±
3 . On them two-dimensional

branches G±
1 ,G

±
2 ,G

±
3 of the manifold Ω meet (but do not intersect).
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New cases of integrability of the Euler–Poisson sys-
tem

Alexander Bruno and Alexander Batkhin

Abstract. In the classical problem of motion of a rigid body around a fixed
point described by the Euler–Poisson system, new cases of global integrability
are found. For one of these cases, generalizing the Kovalevskaya case, a fourth
global integral is proposed.

1. Introduction

The Euler-Poisson equations (1750) are a real autonomous system of six ordinary
differential equations (ODEs).

Ap′ + (C −B)qr =Mg (y0γ3 − z0γ2) ,

Bq′ + (A− C)pr =Mg (z0γ1 − x0γ3) ,

Cr′ + (B −A)pq =Mg (x0γ2 − y0γ1) ,

γ′1 = rγ2 − qγ3, γ′2 = pγ3 − rγ1, γ′3 = qγ1 − pγ2,

(1)

with dependent variables p, q, r, γ1, γ2, γ3 and parameters A,B,C, x0, y0, z0, satis-
fying the triangle inequalities

0 < A ⩽ B + C, 0 < B ⩽ A+ C, 0 < C ⩽ A+B. (2)

Here, the prime sign ′ indicates differentiation over independent variable time t,
Mg is the weight of the body, A,B,C are the principal moments of inertia of the
rigid body, x0, y0, z0 are the coordinates of the center of gravity of the rigid body,
γ1, γ2, γ3 are the vertical directional cosines.
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The system (1) describes the motion of a spinner around a fixed point (Gol-
ubev, [1]) and has three first integrals: energy, momentum, and geometric:

I1
def
= Ap2 +Bq2 + Cr2 − 2Mg (x0γ1 + y0γ2 + z0γ3) = h = const,

I2
def
= Apγ1 +Bqγ2 + Crγ3 = l = const,

I3
def
= γ21 + γ22 + γ23 = 1.

(3)

The system is integrable if there is a fourth general integral I4. So far, 4 cases
of global integrability are known:

Case 1. Euler-Poinsot: x0 = y0 = z0 = 0 and I4
def
= A2p2+B2q2+C2r2 = const.

Case 2. Lagrange-Poisson: B ̸= C, x0 = ̸= 0, y0 = z0 = 0, and I4
def
= p = const.

Case 3. Kovalevskaya (1890): A = B = 2C, x0 ̸= 0, y0 = z0 = 0, and

I4
def
=
(
p2 − q2 + cγ1

)2
+ (2pq + cγ2)

2
= const, (4)

where c =Mgx0/C.
Case 4. Kinematic symmetry: A = B = C and I4

def
= x0p + y0q + z0r = const.

It is derived from case 2.

2. Results
We found the following new cases of integrability of the system (1).

Case 5: A = B = 2C, x0 ̸= 0, y0 ̸= 0, z0 = 0. Then the fourth integral I4 has
the form

I4
def
=
(
p2 − q2 + cγ1 − dγ2

)2
+ (2pq + dγ1 + cγ2)

2
= const, (5)

where c =Mgx0/C, d =Mgy0/C. This is a generalization of Kovalevskaya’s
case 3 and her fourth integral (4). As for cases 1–4 the fourth integral (5) is
independent of the integrals (3).

Case 6: B = C, A2 (A− 2B)x20 = B (2A−B)
2
y20 , z0 = 0.

For case 6, the inequalities of triangle (2) are not satisfied. For case 6, the
additional fourth integral I4 was not written out, and local integrability was
checked near the corresponding fixed points for third-order resonances. According
to (Bruno, [2, Section 5.3]) the coefficients of the resonance terms of the normal
form at 2 : 1 resonance should be zero in integrable cases. In this case they are
zero.

3. Theory
We have found some general property of integrable cases 1–4, which is formulated
below as Hypothesis 2. So we have to compute all those values of parameters
A,B,C, x0, y0, z0 for which this property is satisfied. And then, by computing the
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resonance terms of the normal form of the system (1), to extract from them those
values at which the system (1) is integrable.

Hypothesis 1 (Edneral, [3]). If an autonomous polynomial ODE system is locally
integrable in the neighborhood of all its stationary points, then it is globally inte-
grable.

Therefore, to find global integrability, we must first find all the stationary
points of the ODE system, and then find out whether the system is locally inte-
grable in their neighborhoods.

Let X = (p, q, r, γ1, γ2, γ3), the point X = X0 is a stationary point of the
system (1) andM is a matrix of the linear part of the system (1) near the pointX0.
The characteristic polynomial χ(λ) of the matrix M is χ(λ) = λ6 + a4λ

4 + a2λ
2.

Its discriminant
Dλ(χ) = a24 − 4a2 (6)

is a rational function D = G/H, where G and H are polynomials.
A stationary point is locally integrable (Bruno, [2]) if a2 < 0 or Dλ(χ) < 0.

But this property is not satisfied for definite values of the system parameters (1).
The stationary points of the system (1) form one-dimensional and two-dimensional

families F l
j in R6.

Hypothesis 2. If near a stationary point X0 of the family F l
j the system (1) is

locally integrable, then at these parameter values the second discriminant ∆
(
F l

j

)

of the numerator G of the first discriminant Dλ(χ) on the parameter of the family
F l

j is zero.

Considering Hypothesis 1, now the search for integrable cases consists of the
following 5 steps.

Step 1: Fix the number l of non-zero parameters x0, y0, z0 and find all families
F l

j of stationary points.
Step 2: Compute the discriminants (6) Dλ(χ) on the families F l

j .
Step 3: On families F l

j , compute the second discriminants ∆
(
F l

j

)
of the numer-

ators G of the first discriminants D.
Step 4: Find the values of the parameters of the system (1) at which all ∆

(
F l

j

)
=

0 at fixed l.
Step 5: Check the obtained parameter values for integrability by computing the

normal forms of the system (1) near stationary points or by finding the fourth
integral.

4. Computations
4.1. Case l = 0 : x0 = y0 = z0 = 0

Then the system (1) has 3 families of stationary points:
F0

1 : {q = r = 0, γ1 = p/k = ±1, γ2 = γ3 = 0}, p is a parameter;
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F0
2 : {p = r = 0, γ2 = q/k = ±1, γ1 = γ3 = 0}, q is a parameter;

F0
3 : {p = q = 0, γ3 = r/k = ±1, γ1 = γ2 = 0}, r is a parameter.

They all have ∆
(
F0

j

)
≡ 0 on them, so the system (1) is integrable (Case 1).

4.2. Case l = 1 : x0 ̸= 0, y0 = z0 = 0

Then the system (1) has 4 families of stationary points:
F1

1 : {q = r = 0, γ1 = p/k = ±1, γ2 = γ3 = 0, B ̸= C}, p is a parameter;

F1
2 :
{
p =

x0
k(C −A)

, q = 0, γ1 =
p

k
, γ2 = 0, γ3 =

s

k
, γ21 + γ23 = 1, A ̸= C ̸= B

}
,

r is a parameter;

F1
3 :
{
p =

x0
k(B −A)

, r = 0, γ1 =
p

k
, γ2 =

q

k
, γ3 = 0, γ21 + γ22 = 1, A ̸= B ̸= C

}
,

q is a parameter;

F1
4 :
{
p =

x0
k(B −A)

, γ1 =
p

k
, γ2 =

q

k
, γ3 =

r

k
, γ21 + γ22 + γ23 = 1, A ̸= B = C

}
,

q, r are parameters.
All the second discriminants for these families are zero when:

1. B = C – Case 2;
2. A = B = 2C – Case 3;
3. A = 2C, B = 3C;
4. A = 2C, B = δC, where δ is the root of the equation δ3−12δ2+33δ−24 = 0,

i.e., δ1 ≈ 1.194, δ2 ≈ 2.387, δ3 ≈ 8.419.
But the check shows that there is no local integrability in items 3 and 4.

4.3. Case l = 2 : x0 ̸= 0, y0 ̸= 0, z0 = 0

Then the system (1) has 2 families of stationary points:

F2
1 :

{
p =

x0
k(C −A)

, q =
y0

k(C −B)
, γ1 =

p

k
, γ2 =

q

k
, γ3 =

r

k
,

γ21 + γ22 + γ23 = 1, A ̸= C ̸= B
}
, r is a parameter;

F2
2 :

{
p = − x0

k(A+ T )
, q = − y0

k(B + T )
, r = 0, γ1 =

p

k
, γ2 =

q

k
, γ3 = 0,

γ21 + γ22 = 1
}
, T is a parameter;

The second discriminants ∆(F2
1 ) and ∆(F2

2 ) were obtained during the com-
putation, but we could not factorize ∆(F2

2 ) because it contains several hundred
thousand monomials. Therefore, we computed ∆(F2

2 ) on the zeros of ∆(F2
1 ). We

get the following results.
With B = C both ∆ are zero at

• A = B = C (Case 4),
• B = C and A2(A− 2B)x20 = B(2A−B)2y20 (new Case 6),
• A = 2B = 2C.
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Checking shows that the last case is non-integrable.
With A = B we get that ∆(F2

2 ) = −4A2C3(A − 2C). Therefore, when A =
B = 2C, both ∆ are zero. This is the new Case 5.

4.4. Case l = 3 : x0 ̸= 0, y0 ̸= 0, z0 ̸= 0

Then the system (1) has one family of stationary points:

F3
1 :

{
p = − x0

k(A+ T )
, q = − y0

k(B + T )
, r = − z0

k(C + T )
,

γ1 =
p

k
, γ2 =

q

k
, γ3 =

r

k
, γ21 + γ22 = 1

}
,

T is a parameter;
The first discriminant of Dλ(χ) is a 10th degree polynomial of T . It is impos-

sible to compute its discriminant on T in the generic case, but when A = B = C
(Case 4) it is zero. When A = B = 2C, the second discriminant ∆(F3

1 ) =

384A2
(
x20 + y20

)4 ̸= 0. According to Hypothesis 2, this is a non-integrable case.
So here also as for the family F2

2 we should look for other methods of com-
puting discriminants or more powerful computers.
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Analytic solving any equation of polynomial type
on variables and derivatives

Alexander Bruno

Abstract. A calculus [1] has been developed which allows one to calculate ana-
lytically asymptotic expansions of solutions to equations which are polynomi-
als on variables and their derivatives, as well as to systems of such equations.
This calculus is applied to equations of any type: algebraic [2, 3], ordinary
differential [4] and partial differential [5], as well as to their systems. The
calculus is based on algorithms of power geometry: (a) selection of truncated
equations consisting of all leading terms, as well as (b) power transformations,
(c) logarithmic and (d) normalizing coordinate transformations. The required
software for this calculus has already been developed.

1. Introduction

For a single equation, the sequence of calculations is as follows:

I. First, the truncated equations are selected and the regions where they are
first approximations of the original equation are specified.

II. Each truncated equation is then simplified using power and logarithmic coor-
dinate transformations, possibly repeatedly, to an equation that has a simple
solution.

III. This is augmented to the solution of the truncated equation.
IV. If its perturbation in the full equation has a linear part, we obtain the solution

of the original equation by the normalizing transformation.
V. If this perturbation does not have a linear part, we repeat this process for it,

i.e., we again separate the truncated equations and simplify them until we
come to situation IV, i.e., to a perturbation with a linear part, for which we
find a solution.

The methods of applying this calculus to equations of different types are
described below.

The article [1] outlines the objects and sequences of calculus for:
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1. One algebraic equation.
2. One ordinary differential equation (ODE) of order n.
3. An autonomous system of n ODEs.
4. One partial differential equation.

A brief review of applications is also given there.
Here we give algorithms of nonlinear analysis for cases of one equation and

discuss levels of power geometry.

2. Levels of Power Geometry
Everything that has been told in [1] refers to the zero level of power geometry, for
there it has been «sealed» that

ord y′ = ord y − 1. (1)

But this is not always the situation. By rejecting this property, we get a wider set
of solutions. Let’s discuss this in more detail.

In the algebraic equation

f(X)
def
=
∑

aQX
Q = 0,

with X ∈ Rn or Cn to each monomial aQXQ can be assigned a point Q̌ =

{Q, ln |aQ||} in Rn+1. Their set forms the supersupport Š(f), and its convex hull
Ȟ(f) is the Adamar polyhedron [6].

We build truncated equations on its faces. They are simpler than the trun-
cated equations corresponding to the faces of Newton’s polyhedron, and allow us
to study cases where Newton’s polyhedron fails.

For a single ODE, one can search for solutions that have ord y − ord y′ ̸= 1
by introducing a new coordinate for the order of the derivative y′. This was done
in [7] and allowed us to obtain solutions in the form of power expansions whose
coefficients are trigonometric or elliptic functions.

We can consider solutions where ord y(k) − ord y(k+1) is arbitrary, or several
such differences are arbitrary, and obtain new types of solutions. For details see
[8, 9, 10].

A similar thing could be done with partial differential equations, but it has
not been done yet.
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QUBO formulations of particle tracking algorithms

M. Bureš, I. Kadochnikov and G. Ososkov

Abstract. SPD (Spin Physics Detector) is a planned future experiment on
the NICA megascience project developed in Dubna. Based on modeling data
of the SPD experiment, this work is the first attempt to use the Hopfield
network approach to formulate a QUBO problem and use simulated annealing
to estimate the feasibility of the future use of quantum annealing to speed up
present SPD particle tracking approaches.

Introduction

One of the key stages of data processing from particle physics experiments is the
reconstruction of trajectories (tracks) of interacting particles from measurement
data. In many future experiments, such as the High-Luminosity Large Hadron
Collider (HL-LHC) or the SPD experiment planned at the NICA collider in Dubna,
a special difficulty will be caused by the extremely high frequency of interactions.

In SPD, a very high data acquisition rate of 20 GB/sec resulting from 3 MHz
collision frequency implies that tracks of several events will be overlapped and
recorded in a single time-slice. Besides this, a strong contamination of data by
fake measurements due to the specifics of used track detectors [2] will further raise
the bar for track reconstruction (tracking) algorithms performance.

In our recent study [1], methods based on the Hopfield neural network for
tracking simulated events of the SPD experiment were investigated. The minimum
of the network energy function, corresponding to the solution of the problem, was
obtained via simulated annealing.

However, it has been shown in recent works [7, 8] that combinatorial opti-
mization problems can be successfully solved using quantum annealing techniques.
For this purpose, the track reconstruction problem is formulated as quadratic un-
constrained binary optimization (QUBO) and can be natively solved by quantum
annealers, such as the commercially available D-Wave machines. Although the
quantum speed-up potential is not yet clear, the anneal time of ≈ 20µs, indepen-
dently of the size of the problem, promises an acceleration that deserves to be
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explored. So far, current D-Wave hardware yields results very similar to classical
solvers - the anneal needs to be run multiple times, as noise, thermal fluctuations
and other external factors may interfere with the process. Further complications
arise due to various overhead costs and the necessity to split large QUBOs into
small instances that fit the hardware [7].

We should also point out an interesting possibility of applying algorithms
for gate-based quantum computers, like the Quantum Approximate Optimization
Algorithm (QAOA), the Variational Quantum Eigensolver (VQE) and the Harrow-
Hassadim-Lloyd (HHL) algorithm, which, when applied to the optimization of the
Hopfield network, can serve to further accelerate the search for the global minimum
of the proposed matrix representing the network energy function.

The Hopfield network approach
A track with n hits (3d coordinates from detectors) can be regarded as a set
of n − 1 consecutive lines (“track segments”) with a smooth shape and without
bifurcation [6]. Based on methods developed in the late eighties (Denby 1988 [3];
Peterson 1989 [4]) and the beginning of nineties (Stimpfl-Abele and Garrido [6]),
the Hopfield network [5] approach uses for track reconstruction a method that
optimizes an energy function for which we chose the following form:

E = −γ
∑

i,j,k

(
cosλ(θijk)

(rij + rjk)η

)
vijvjk + α


∑

j ̸=k

vijvik +
∑

i̸=j

vikvjk


+ β

∑

i,j

vij , (1)

where θijl is the angle between possible track segments vij and vjk (equal to one
when active and zero otherwise) of length rij and rjk, respectively. The second
term is a penalty for an undesired track bifurcation, the third one is a constant
inhibition term which helped us make the energy matrix more sparse.

This way, we obtain a segment classification task, where each term of the
energy function E is designed for geometric rewards and penalties weighted by
parameters γ, λ, α, β, such that tracks composed of short track segments (doublets)
that lie on a smooth curves with no bifurcations are biased, cf. [8].

Results for SPD modeling data
An example of the results of our method for an event with 10 tracks with different
number of noise hits and sets of optimized parameters is shown in Fig. 1. Due
to the large number of detector layers, tracks consist of a large number of short
segments, which facilitates their reconstruction. However, it can be seen that a
larger amount of noise hits decreases the tracking quality.

QUBO formulation of the particle tracking problem
Energy function (1) resembles a QUBO, which is defined as

min
x∈{0,1}n

c⊺x+ x⊺Qx , (2)

where the minimum is taken over the collection of binary vectors x of length n,
c ∈ Rn and Q ∈ Rn×n is a symmetric matrix. QUBO does not, by definition,
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(a) (b) (c)

Figure 1. Results of tracking of an event with 10 tracks. True
positive, true negative, false positive and false negative segments
are shown. (a) 100 noise hits (b) 1750 noise hits, minimization of
false-positive segments prioritized (c) 1750 noise hits, TrackML [9]
metric prioritized [1, 8].

contain constraints, so any potential constraints have to be incorporated to the
objective function as penalties through reformulation techniques. A drawback of
such an approach is that such squared penalty will result in a QUBO with O(n2)
quadratic terms. However, there exist approaches to design more efficient ways
to represent such constraints for optimization with quantum annealers such as
D-Wave (e.g. [10]).

When QUBO is solved on a quantum annealer, each linear coefficient ci of
QUBO is mapped as a bias onto a distinct qubit i, and each quadratic coefficient
qij is encoded as a weight of a link between qubits i and j, called a coupler [10].

The mapping from the QUBO problem to the graph, describing the inter-
connection between the qubits in the hardware (“chimera” graph structure in the
current D-Wave architecture) is a limitation of this approach, and is currently dealt
with through so-called minor-embedding [12]. More on QUBO/Ising formulations
of NP problems can be found in [11].

To improve the performance of the algorithm, we plan to formulate QUBO
to identify the best pairs of triplets, instead of doublets. A triplet Ti is a set of
three hits (a, b, c) or a pair of consecutive doublets (a, b and b, c). Two triplets of
hits (a, b, c) and (d, e, f), can be combined to form a quadruplet if b = d ∧ c = e
or a quintet if c = d. The objective function (2) to minimize has two components:
a linear term that weighs the quality of individual triplets and a quadratic term
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used to express relationships between pairs of triplets:

N∑

i=1

aiTi +

N∑

i

N∑

j<i

bijTiTj , (3)

where T are all potential triplets, ai are the bias weights, and bij the coupling
strengths computed from the relation between the triplets Ti and Tj [7].

Conclusion and outlook
We attempted to apply several modifications of the algorithm to the simulation
of SPD data with the presence of fake hits. The method showed good results, but
under rather simple conditions. Fake and noise hits pose notable difficulties for
tracking by different methods. We need to study the impact of events where fake
hits are generated more correctly in terms of the geometry of the experimental
setup. An improvement of the energy function, which gives us the QUBO model,
has to be worked out. More advanced segment filtering methods are needed (e.g.
using triplets [7]), which would possibly reduce the impact of noise hits, and also
allow the method to be tested on TrackML [9] data. Finally, a method to assess
the timing performance of the algorithm needs to be developed.
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Block-Fermat numbers in modular arithmetic

Benjamin Chen and Eugene V. Zima

Abstract. Conversion to a modular representation or residue number system
(RNS) is a popular technique to accelerate arithmetic in computer algebra
systems. We describe and analyse the strategy of selecting moduli in modular
arithmetic using so called Block-Fermat numbers of the form 2n + 1 and
compare this with Mersenne type numbers of the form 2n − 1. We show that
conversion to RNS for Block-Fermat numbers has the same complexity as for
Mersenne type numbers of the same size, however reconstruction based on
Block-Fermat numbers is much faster.

1. Introduction

Conversion to a modular representation or residue number system (RNS) is a pop-
ular technique to accelerate arithmetic of computer algebra systems. An overhead
of using modular approach is related to the need of conversion of the input in-
volving large integers to RNS and the need of reconstruction of the result from
multiple modular images using he Chinese remainder theorem [6, 8]. The choice
of specific values moduli can influence significantly the time complexity of both
computations in RNS and reconstruction of the result. One popular approach is
to choose many moduli that fit machine word and use hardware arithmetic for the
simultaneous conversion to and from an RNS [1, 3]. Another approach is related
to the choice of moduli with special shape (bit pattern) that accelerates reduc-
tion modulo mi and (possibly) reconstruction. One of the oldest examples of such
approach is described in [9, 8] (see also [10]). We consider combination of these
approaches.

In [3] an algorithm for simultaneous conversions between a given set of inte-
gers and their modular representations based on fast linear algebra is described.
A highly optimized implementation of the algorithm in FFLAS-FFPACK library
[4] that exploits the computational features of modern CPUs is provided. This
implementation performance on the benchmark of matrix multiplication starts to
deteriorate when the size of entries of randomly selected integer matrices becomes
very large (218 or more bits). Authors discuss two possible workarounds for these
cases. In [2] we described an alternative approach based on two-layer modular
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arithmetic. The idea is to select large moduli allowing faster than usual reduc-
tion/reconstruction on the first layer, and reduce the problem to several problems
with entries bit-size amenable for FFLAS-FFPACK implementation. On the sec-
ond layer simultaneous conversion [3] is used. Results from the second layer are
used to reconstruct the final answer using accelerated reconstruction with specially
selected moduli.

2. Block-Fermat numbers

Consider pairwise co-prime natural numbers m0,m1, . . . ,mk and assume we work
with non-negative representatives in each class of residues modulo mi. Modu-
lar reconstruction problem is: given non-negative x0, x1, . . . , xk (xi < mi), find
non-negative X < m0m1 . . .mk such that X = xi mod mi for i = 0, 1, . . . , k.
Standard modular reconstruction algorithms [6] precompute products of moduli

Mi =
∏i−1

j=0mj and inverses M−1
i mod mi, i = 1, . . . , k. Reconstruction involves

several multiplications by these quantities which provide significant contribution
to the total complexity. When deciding a particular approach to the choice of
moduli mi one can try to satisfy the following natural requirements:

1. gcd(mi,mj) = 1 for i ̸= j;
2. reduction modulo mi is “simpler” than division with remainder;
3. products of moduli and their inverses have bit pattern (preferably scalable)

that allows accelerated multiplication by those quantities;
4. bit length of moduli mi is balanced.

Several strategies to select moduli of the form 2n±1 are considered in [10]. They all
improve modular reduction time (replacing division with remainder by shifts and

additions/subtractions). Shift-based [10] moduli of the form mi = 2a2
i

+ 1, i =
0, 1, . . . , k, also satisfy requirement 3, as




i−1∏

j=0

mj




−1

mod mi = 2a2
i−1 − 2a−1 + 1, i = 1, 2, ..., k (1)

for arbitrary natural a. However, such choice of moduli does not satisfy require-
ment 4. In fact, the bit length of mi is larger than the bit length of product
m0m1 . . .mi−1.

There are several strategies of selection of balanced moduli of Fermat-type.
Some of strategies were first discussed in [10]. We show that one of strategies
produces the set of moduli which satisfies all aforementioned natural requirements.

Consider moduli a = 22
n−2k + 1 and b = 22

n−2ℓ + 1 with 2 ≤ k < n, 2 ≤ ℓ < n
(we call them Block-Fermat moduli). They are relatively prime for k ̸= ℓ (see
[10]) and more balanced in size, compared to shift-based moduli mi in (1). In
fact, for fixed value of n the largest modulus requires at most twice as many bits
as the smallest one. The quantity (a−1 mod b), which is used in reconstruction
from modular images, has a sparse bit pattern and also is scalable. This means
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that if one scales the exponents in a and b by the same natural scaling factor u

(i.e., considers moduli ã = 2u(2
n−2k) +1 and b̃ = 2u(2

n−2ℓ) +1) then (ã−1 mod b̃)
will have the same sparsity as (a−1 mod b). For example, for a = 2224 + 1 and
b = 2192 + 1 we have

a−1 mod b = 2191 + 2159 + 2127 + 295 + 263 + 231 + 1.

Now, if we scale moduli by factor u = 100 and consider ã = 222400 + 1 and
b̃ = 219200 + 1, then

ã−1 mod b̃ = 219199 + 215999 + 212799 + 29599 + 26399 + 23199 + 1.

Multiplication by such sparse inverses reduces to additions and shifts, which can
be used to accelerate reconstruction of the result from modular images in upper
layer of two-layer modular arithmetic [2].
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Estimates for roots of a polynomial in the field
of multiple formal fractional power series in zero
characteristic

Alexander L. Chistov

Let k be a ground field of zero–characteristic with algebraic closure k. We as-
sume that k is finitely generated over its primitive subfield. Let f ∈ k[X1, . . . , Xn, Z]
be a polynomial of degree degZ,X1,...,Xn

6 d for an integer d > 2.
Consider f ∈ k(X1, . . . , Xn)[Z] as a polynomial in one variable Z with coeffi-

cients in k(X1, . . . , Xn). Then the roots Z = zα of the polynomial f belong to the
field of multiple formal fractional power series in X1, . . . , Xn, i.e. to the union by
all integers ν1, . . . , νn > 1 of the fields of multiple formal fractional power series:

⋃

ν1,...,νn>1

k((X
1/ν1
1 ))((X

1/ν2
2 )) . . . ((X1/ν2

n )). (1)

This field is algebraically closed. The aim of this talk is to attract the atention to
the problem of estimating and constructing the roots zα in the field (1) (of course
one needs to estimate the sizes of coefficients from k of zα in the field (1)). This
problem is solved for n = 1 in [1]. To our knowledge for the case case n > 1 no
estimates have been obtained so far.

The problem for an arbitrary n is reduced to the case ν1 = . . . = νn = 1.
Hence now zα ∈ k((X1))((X2)) . . . ((Xn)). Further, for all 1 6 j 6 n put X ′j =

Xj/(X
µj,1

1 · . . . ·Xµj,j−1

j−1 ) for some integers µj,i > 0 (so X ′1 = X1). Then one can
choose integers µj,i such that

zα ∈ k[[X ′1, . . . , X ′n]], (2)

i.e., zα are formal power series in X ′1, . . . , X ′n with coefficients from k. Good upper
bounds for the coefficients of formal power series in (2) can be obtained using the
results of [2], [3].

Now it remains to estimate the least possible µj,i. This can be done applying
the results of [1] or [3] recursively. The direct application of [1] or [3] gives double–
exponential in n upper bounds for µj,i. But we hope to improve the estimates from
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[3] and obtain upper bounds for µj,i which are subexponential in the number of
coefficients of the polynomial f , i.e., upper bounds polynomial in dn

O(1)

.
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On the integrability of two- and three-dimensional

dynamical systems with a quadratic right-hand side

in cases of resonances in linear parts and in cases

of general position

Victor F. Edneral

Àííîòàöèÿ. We use a heuristic method that allows one to a prior determine
the cases of integrability of an autonomous dynamical systems with a polynomial
right-hand side. We demonstrate the capabilities of the method using examples
of two and three-dimensional dynamic systems with quadratic nonlinearity. A
signi�cant advance relative to our previous works is the possibility of studying
systems of a general form, without resonances in the linear parts.

Introduction

In previous works [1, 2] a technique was described for constructing systems of
algebraic equations for the parameters of an ODE system with resonance in its
linear part. It was experimentally shown that with relations on the parameters
obtained as a result of solving such a system, it is usually possible to �nd explicit
expressions for the �rst integrals of the ODE.

This report discusses the use of this technique to search for �rst integrals of
two and three-dimensional systems with quadratic nonlinearity on the right-hand
sides.

1. Two-dimensional case

For the center case

ẋ = y + a1x
2 + a2x y + a3y

2,
ẏ = −x+ b1x

2 + b2x y + b3y
2,

(1)
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the �rst integrals can be calculated for the systems:

1 ẋ = y + a1x
2 − 2 b3xy + a3y

2, ẏ = −x+ b1x
2 − 2 a1xy + b3y

2;
2 ẋ = y + a1x

2 + a2xy − a1y2, ẏ = −x− b3x2 + b2xy + b3y
2.

3 ẋ = y + a2xy, ẏ = −x+ b1x
2 + b3y

2;
4 ẋ = y + a1x

2 − 2 b3xy, ẏ = −x+ b1x
2 − 2 a1xy + b3y

2;
5 ẋ = y + a1x

2 − 2b3xy − a1y2, ẏ = −x+ b1x
2 − 2a1xy + b3y

2;
6 ẋ = y + a1x

2 + a2xy − a1y2, ẏ = −x− b3x2 − 2a1xy + b3y
2.

7 ẋ = y + a2xy − b2y2, ẏ = −x− a2x2 + b2xy;
8 ẋ = y + a1x

2 + 1
5 (−3a1 + b2)y

2, ẏ = −x+ b2xy;
9 ẋ = y + 1

5 b2y
2, ẏ = −x+ b2xy;

10 ẋ = y − b2xy + 1
5 b2y

2, ẏ = −x− 1
5 b2x

2 + b2xy;
11 ẋ = y + b2xy +

1
5 b2y

2, ẏ = −x+ 1
5 b2x

2 + b2xy;
12 ẋ = y + a1x

2 − 5
6 a1y

2, ẏ = −x− 7
6 a1xy;

13 ẋ = y + a1x
2 − 2

3 a1y
2, ẏ = −x− 4

3 a1xy.

In case 2 above we can prove the existence of an integrating factor, but the �rst
integral is too cumbersome to handle. We are grateful to Prof. M.V. Demina for
the calculation of the �rst integral in case 6.

For the saddle case

ẋ = αx+ a1x
2 + a2x y + a3y

2,
ẏ = −y + b1x

2 + b2x y + b3y
2,

(2)

at the resonance 1:1, i.e. at α = 1 we got the �rst integrals for the systems:

1 ẋ = x+ b2b3/a2 x
2 + a2xy + a3y

2, ẏ = −y + a3b
3
2/a

3
2 x

2 + b2xy + b3y
2;

2 ẋ = x+ a1x
2 + a3y

2, ẏ = −y + b1x
2 + b3y

2;
3 ẋ = x− 1

2 b2x
2 + a2xy + a3y

2, ẏ = −y + b1x
2 + b2xy − 1

2 a2y
2;

4 ẋ = x+ a1x
2, ẏ = −y + b1x

2 + b2xy;

5 ẋ = x+ 2b2x
2 + a2xy + a3y

2, ẏ = −y + a2b2
a3

x2 + b2xy + 2a2y
2;

6 ẋ = x− b2/2x2 + a2xy, ẏ = −y + b2xy − a2/2y2;
7 ẋ = x+ 2b2x

2 + a2xy, ẏ = −y + b2xy + 2a2y
2.

For the resonance 2 : 1, i.e. at α = 2 we got the �rst integrals for the systems:

1 ẋ = 2x+ 2b2b3x
2

a2+b3
+ a2xy, ẏ = −y + b2xy + b3y

2;

2 ẋ = 2x− 2
3 b2x

2 − 4b3xy, ẏ = −y + b1x
2 + b2xy + b3y

2;
3 ẋ = 2x+ a1x

2 − b3xy, ẏ = −y + b1x
2 + b3y

2;
4 ẋ = 2x+ a1x

2, ẏ = −y + b1x
2 + b2xy;

5 ẋ = 2x+ 4
3 b2x

2 + 1
2 b3xy, ẏ = −y + b2xy + b3y

2;
6 ẋ = 2x+ 1

2 b3xy, ẏ = −y + b1x
2 + b3y

2;
7 ẋ = 2x+ a3y

2, ẏ = −y.
The results above were got by solving the algebraic systems on the system

parameters. Each of these algebraic system was calculated for a certain resonance,
i.e. for the �xed natural parameter α. But the form of all these equations, their
variables, are the same. The idea arises to look for a general solution of systems for
several resonances. We solved a combined system for 1:1, 2:1 and 3:1 resonances.
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For each set of parameters obtained as a result of solving this uni�ed system, it was
possible to calculate the �rst integrals of system (2) for an arbitrary (symbolic) α.
These systems are:

1 ẋ = αx+ a1x
2, ẏ = −y + b1x

2 + b3y
2;

2 ẋ = αx+ a1x
2, ẏ = −y + b1x

2 + b2xy;
3 ẋ = αx+ a2xy + a3y

2, ẏ = −y + b3y
2;

4 ẋ = αx+ 2b2x
2 + a3y

2, ẏ = −y + b2xy;
5 ẋ = αx+ a2xy, ẏ = −y + b2xy;
6 ẋ = αx+ a2xy + a3y

2, ẏ = −y;
7 ẋ = αx+ a2xy + a3y

2, ẏ = −y − 1
2 a2y

2;
8 ẋ = αx+ b2x

2 + a2xy, ẏ = −y + b2xy + a2y
2;

9 ẋ = αx+ a2xy + a3y
2, ẏ = −y + a2y

2;
10 ẋ = αx+ a2xy, ẏ = −y + b1x

2 + 2a2y
2;

11 ẋ = αx+ a2xy + a3y
2, ẏ = −y + 2a2y

2.

The �rst integrals for the systems above were calculated by the procedure DSolve
of the MATHEMATICA-11 system or by hand using the Darboux method.

Three dimension case

First we considered resonant cases of the system

ẋ = Mx x+ a2 x y + a4 x z + a5 y z,
ẏ = −My y + b2 x y + b4 x z + b5 y z,
ż = −z + c2 x y + c4 x z + c5 y z

(3)

with natural Mx,My on the square table {1, 2, 3} × {1, 2, 3}
In the two-dimensional case, we struggled to evaluate each integral. But

here we limited ourselves to calculations only using the DSolve procedure of the
MATHEMATICA 13.3.1.0 system. The result is in the table

N Mx My Alg.solutions Integrals % Success
8 1 1 23 19 83
8 1 2 16 12 75
8 1 3 25 19 76
8 2 1 57 49 86
8 2 2 34 29 85
8 2 3 43 35 81
9 3 1 60 51 85
9 3 2 63 58 92
10 3 3 43 38 88

�N� here is the normal form order, �Alg.solutions� is a number of rational
solutions of the corresponding algebraic system, the �Integrals� is a number of
success solutions by the MATHEMATICA and �Success� is the percentage of
successfully integrated cases to the total number of solutions of the corresponding
algebraic system.

Then we solved the uni�ed algebraic system of 329 equations, found its 10
solutions, and found that system MATHEMATICA-11 solves all corresponding
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systems of ODEs of the form (3) except one. These systems with arbitary Mx and
My are:

1 ẋ =Mxx+ a2x · y + a4x · z + a5y · z, ẏ = −Myy + b5y · z, ż = −z + c5y · z;
2 ẋ =Mxx, ẏ = −Myy + b2x · y + b4x · z, ż = −z + c4x · z;
3 ẋ =Mxx+ a2x · y + a4x · z + a5y · z, ẏ = −Myy + a4y · z, ż = −z − a2y · z;
4 ẋ =Mxx, ẏ = −Myy + b2x · y, ż = −z + c4x · z;
5 ẋ =Mxx, ẏ = −Myy + b4x · z, ż = −z + c4x · z;
6 ẋ =Mxx, ẏ = −Myy, ż = −z + c4x · z + c5y · z;
7 ẋ =Mxx, ẏ = −Myy + b2x · y + b5y · z, ż = −z;
8 ẋ =Mxx+ a4x · z, ẏ = −Myy + b4x · z + a4y · z, ż = −z;
9 ẋ =Mxx+ a5y · z, ẏ = −Myy + b2x · y, ż = −z − b2x · z;Nonintegrable?
10 ẋ =Mxx, ẏ = −Myy, ż = −z + c4x · z.

2. The general three-dimension system

Finally, we considered the general case of a three-dimensional system with 20
parameters

ẋ = Mxx+ a1x
2 + a2x · y + a3y

2 + a4x · z + a5y · z + a6z
2,

ẏ = −Myy + b1x
2 + b2x · y + b3y

2 + b4x · z + b5y · z + b6z
2,

ż = − z + c1x
2 + c2x · y + c3y

2 + c4x · z + c5y · z + c6z
2.

Calculating the normal form up to 6th order for 4 pairs {Mx,My}= {1, 1},
{1, 2}, {2, 1} and {2, 2}, we got a system of 121 equations with 18 parameters. We
calculated 174 of its solutions. For 109 of them the MATHEMATICA-13 system
calculated solutions of the corresponding ODEs.
3. Conclusion

There are many cases of integrability of dynamical systems, and the corresponding
exact solutions can be very useful in applications, for example, in problems of
chemical kinetics [3].
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Teaching Statistics with Technology

Dishon Edwards, Stefan Hypolite, Sally-Ann Clement and Aleksandr

Mylläri

Abstract. We discuss usage of computer technology in teaching the introduc-

tory statistics course in St. George's University.

Introduction

Computers have become indispensable teaching tools, providing convenient means
for preparing classes, demonstrations, etc. Computers have also freed students from
boring and time-consuming calculations by completing work quickly and e�ciently.

Computer Algebra Systems (CAS), such as Mathematica or Maple besides be-
ing easy to program basic formulas, provide a set of ready statistical tools ranging
from basic descriptive statistics to �tting the models, cluster analysis, hypothesis
testing and time-series analysis.

Here, we discuss computer tools used in teaching the course on Introduc-
tory Statistics. While CAS are convenient for teachers to prepare for the classes,
preparing demonstrations and assignments, we �nd that students need �rst of all
practical tools that can and will be used in the future for real statistical analy-
sis. So for lab exercises students are recommended to use Excel, RCommander or
JASP.

Excel provides the means for basic statistical analysis and visualizations.
As a spreadsheet it also is convenient as a replacement for "old-fashion" way of
calculations using frequency tables, etc. RCommander is recommended since it
provides a set of professional utilities for statistical analysis and visualization. It
also can be used as a �rst step in learning and using R. Typical problem students
have with using RCommander is related to installation of it. JASP is easy to install
and use and provides most of the tools needed for the course.
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Doubly-periodic string comparison

Nikita Gaevoy, Boris Zolotov and Alexander Tiskin

Abstract. The longest common subsequence (LCS) problem is a fundamen-
tal algorithmic problem. Given a pair of strings, the problem asks for the
length of the longest string that is a subsequence in both input strings. In
previous works, the third author developed an algebraic framework for the
LCS problem and its relatives, based on the Hecke monoid. Among the many
algorithmic problems that can be approached efficiently by this technique,
there is the natural problem of obtaining the LCS length for a pair of strings,
one or both of which have a periodic structure. The case where one of the
input strings is periodic has been considered before; in this work, we develop
an efficient algorithm for the more general case where both input strings are
periodic. This algorithm for doubly-periodic LCS has been engineered by the
first author; the resulting code can process doubly-periodic inputs of sizes far
beyond the reach of ordinary and singly-periodic LCS algorithms.

Introduction
The longest common subsequence (LCS) problem is a fundamental algorithmic
problem. Given a pair of strings, the problem asks for the length of the longest
string that is a subsequence in both input strings. The LCS and the equivalent
problem of computing the edit distance between two strings have found many
applications such as computing Diff of two texts in the corresponding Linux
utility, or, generally, the best weighted alignment of two strings, which is widely
used in bioinformatics.

LCS-related problems display unexpected ties with semigroup algebra, com-
putational geometry and transposition networks. In previous works, the third au-
thor developed an algebraic framework for the LCS problem and its relatives, based
on the Hecke monoid. Surprisingly, multiplication in the Hecke monoid is found to
reflect closely the behavior of the LCS structure under string concatenation.

Among the many algorithmic problems that can be approached efficiently by
this technique, there is the natural problem of obtaining the LCS length for a pair
of strings, one or both of which have a periodic structure. The case where one of
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the input strings is periodic has been considered before: it is solved by reduction
in the affine counterpart of the Hecke monoid.

In this work, we develop an efficient algorithm for the more general case where
both input strings are periodic. It works in time O(mn), under mild assumptions,
where m and n are the lengths of the periods of these strings. This algorithm for
doubly-periodic LCS has been engineered by the first author; the resulting code
can process doubly-periodic inputs of sizes far beyond the reach of ordinary and
singly-periodic LCS algorithms.

1. The framework
In our previous work [3, 5], we established a connection between string comparison
and sticky multiplication of permutations, expressed as P ⊡ Q = R. A subquad-
ratic sticky multiplication algorithm (called Steady Ant Algorithm) is given in [5].

Traditionally, the monoid of permutations considered under sticky multipli-
cation is known as the Hecke monoid Hn. An element of Hn can be represented
by a sticky braid which is analogous to classical braids.

This work extends this connection to infinite periodic strings and affine
permutations [2]. Sticky multiplication is generalised directly to affine permuta-
tions and expressed as P̃ · Q̃ = R̃. The resulting monoid is known as affine Hecke
monoid H̃n.

An (affine) sticky braid is called reduced, if every pair of its strands cross at
most once. A sticky braid (finite or affine) can also be viewed as a transposition
network (introduced as primitive sorting networks in [1]).

For a finite permutation P (affine permutation P̃ ) we choose an arbitrary
reduced braid (or, equivalently, a transposition network) realizing this permutation
and denote it by B(P ) (B(P̃ ), respectively).

Affine replication operator repln allows to extend a function P : [0 :n) → Z
to an affine permutation P̃ of order n, provided all images of P are pairwisely
non-congruent modulo n.

The ΓΦ- or ΦΓ-decomposition is a representation of an affine permutation P̃
of order n as a product of two affine permutations, one of which is a repln of a
permutation in Sn, and the other is monotone increasing on [0 :n).

2. Affine sticky multiplication

We reduce sticky multiplication of affine permutations P̃ , Q̃ to sticky multiplication
of finite permutations. We compute the sticky product of three consecutive periods
of P̃ , Q̃, taken with respect to the codomain of P̃ , which is also the domain of Q̃.
We then cut out and replicate the middle period of the resulting product, obtaining
P̃ ⊡ Q̃; see Algorithm 1.

We prove the correctness of our algorithm by showing that the injection
Q∗ = Q(P )|[n :2n) ·Γ′ can be replicated to form an affine permutation, and the result
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Algorithm 1 Affine Sticky Multiplication
Input: affine permutations P̃ , Q̃ of order n.
Output: affine permutation P̃ ⊡ Q̃.
Description:

1. Compute ΓΦ3n-decomposition P̃ = ΓΦ and ΦΓ3n-decomposition Q̃ = Φ′Γ′.
Let P = Φ|[0 :3n), Q = Φ′|[0 :3n).

2. Compute sticky product P ⊡Q. Compute Q(P ) = P−1 · (P ⊡Q).
3. Compute Q∗ = Q(P )|[n :2n) · Γ′. This is an injection [n : 2n) → Z. We have
Q̃(P̃ ) = replnQ

∗.
4. Output the affine permutation P̃ · Q̃(P̃ ).

of the replication provides the correct value for Q̃(P̃ ). Equivalently, Q∗ coincides
with a single period of Q̃(P̃ ), that is, Q∗ = Q̃(P̃ )|[n :2n) as functions [n : 2n) → Z.

We do this by showing that B(Q̃) can simulate the behavior of B(Q) up to a
subsequent decompression by Γ′, if it is prohibited from untangling intersections
between certain trajectories, while keeping the images of elements within [n : 2n)
unchanged.

The time complexity of this algorithm is O(n · log n) as it uses the Steady
Ant Algorithm for computing the sticky product of two finite permutations, and
otherwise only sorts preimage-image pairs of permutations within a period and
takes standard compositions of permutations.

3. Algorithm for doubly-periodic LCS
Let A = ar, B = bs be finite periodic strings of lengths M = rm, N = sn with
periods a, b, respectively. To find LCS(a, b), we:

1. extend B to an infinite n-periodic string b∞,
2. obtain a skew-affine embedded braid for a vs. b∞ by placing crosses and elbow

joints on the grid in a straightforward manner,
3. reduce this braid using wraparound combing [4], compute the corresponding

affine permutation P̃ describing implicitly the LCS of a vs. b∞,
4. compute P̃⊡r by binary exponentiation using Algorithm 1 as a subroutine,
5. count the elements of P̃⊡r that fall within the bounds of B respecting the

affine structure of the braid.
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Binomial Coefficients as Functions of their Denom-
inator; Another Primality Criteria for Natural In-
tegers

Nikita Gogin and Vladislav Shubin

Abstract. We prove that an odd positive integer n is prime iff denominator
of the rational number 〈

(
n

n−1

)
〉 is nn−1, where 〈

(
n
x

)
〉 = Bn(x) is interpolation

polynomial on x for the set of binomial coefficients {
(
n
r

)
}
r=0,1,....n

and x ∈
[0, n] ⊂ R.

Keywords. Prime numbers, Binomial coefficients, Interpolation polynomial,
Newton interpolation formula, Krawtchouk polynomials.

1. Introduction and Preliminaries
Binomial coefficients have

surprisingly great expressive power . . .
Yu. V. Matiyasevich [2]

In this paper we use generally accepted definition of the (generalized) bino-
mial coefficients as polynomials on the (real) variable x:

(
x

m

)
=
x(x− 1) . . . (x−m+ 1)

m!
(1)

where m is a nonnegative integer,
(
x
0

)
= 1. [3]

However in joint publication [4], among other things, we proved that the identity

(
n

k

)
= (−2)n

n∑

i=0

( i−1
2

n

)
K

(n)
i (k) (2)

is valid for all integer k, 0 ≤ k ≤ n, whereK(n)
i (k) are the Krawtchouk polynomials

of order n. [3]
The right side of this equality is a polynomial on k and this allows us to accept

it as the definition of the symbol 〈
(
n
x

)
〉 where x stands for k and can be treated
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now as an element of any (not necessarily commutative) algebra over a field of zero
characteristic and n is a (fixed) nonnegative integer. In particular if x ∈ [0, n] ⊂ R
the polynomial Bn(x) = 〈

(
n
x

)
〉 is of course the ordinal interpolation polynomial for

the set of binomial coefficients {
(
n
r

)
}
r=0,1,....n

. expanded by the (orthogonal) basis
of Krawtchouk polynomials. Since Bn(x) is interpolation polynomial, we can use
its notation in any form convenient for our purposes. Here we take the explicit
Newton interpolation formula for equidistant nodes with a step h = 1 [5]:

Let f(k), k = 0, 1, . . . , n be a tuple of values of a real function f . Then the
following formula for interpolation polynomial Pn(f ;x) is s valid:

Pn(f ;x) =
n∑

m=0

(
x

m

) m∑

k=0

(−1)m−k
(
m

k

)
f(k), (3)

where x ∈ [0, n] ⊂ R.

2. Some Auxiliary Formulas
Applying formula (3) to x = n−1 and f(k) =

(
n
k

)
we get the equality

Bn(n−1) =
〈( n

n−1

)〉
=

n∑

m=0

(
n−1

m

) m∑

k=0

(−1)m−k
(
m

k

)(
n

k

)
. (4)

Let now A(n) and B(n) be two auxiliary arrays :

A(n) = {am}0≤m≤n , with a0 = 1
and for 1 ≤ m ≤ n

am =

(
n−1

m

)
=
n−1(n−1 − 1)(n−1 − 2) . . . (n−1 − (m− 1))

m!
=
λm
nm

, (5)

where

λm =

∏m−1
r=0 (1− nr)∏m

s=1 s
, (6)

and

B(n) = {bm}0≤m≤n with b0 = 1 and for 1 ≤ m ≤ n

bm =
m∑

k=0

(−1)m−k
(
m

k

)(
n

k

)
= #tm [(1− t)m(1 + t)(n+m)−m] = K(n+m)

m (m). (7)

In particular if m = n and n is odd then bn = 0 [6]. Formula (4) evidently can be
written as a scalar product:

Bn(n−1) =
〈
A(n), B(n)

〉
(8)

.
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From the equalities (4),(7) and (8) we get the “duality” formula:

(
n

n−1

)
=

n∑

m=0

(
n−1

m

)
K(n+m)
m (m). (9)

Lemma 1. 1. (a) If 1 < s ≤ m is an index of the denominator of formula (6)
such that gcd(s,n)=1 then there exists a unique index r , 0 ≤ r ≤ m−1
in its numerator such that s|(1− nr);

(b) In particular if n = p is an odd prime integer then all numbers λm are
integers with gcd(λm, n = p) = 1 for all m < n = p.

2. (a) an = an−1(1−n(n−1))
n for any n;

(b) in particular if n = p then λp = 1− p(p− 1) ≡ 1 mod(p);
3. (a) A(p) =

{
{am = λm

pm }0≤m≤(p−1), ap =
λp−1(1−p(p−1))

pp+1

}
;

(b) Denominators of A(p) are
{

pm for 0 ≤ m ≤ p− 1
pp+1 for m = p

. (10)

Proof. 1. s|(1− nr)⇐⇒ r = n−1(mod s) is unique because gcd(s, n) = 1;
The special case n = p is obvious from formula (5);

2. (a) is clear from formula (5);
(b) is evident;

3. is obvious from 2. (a) and (b).
�

Lemma 2. If n = p is an odd prime integer then

bp = 0; bm ≡ (−1)m(mod p) for 0 ≤ m ≤ p− 1. (11)

Proof. For the first equality see formula (7) above.
For the second congruence we get from formula (7):

bm = (−1)m
m∑

k=0

(−1)k
(
m

k

)(
p

k

)
. (12)

But
(
p
k

)
(mod p) ≡ 0 excepting k = 0 and k = p when it is ≡ 1. Thus here in

(12) we need only k = 0 and in this first case bm ≡ (−1)m(mod p) for all
0 ≤ m ≤ p− 1. �

Theorem 1. An odd natural number n is prime iff.

Denominator
〈( n

n−1

)〉
= Denominator

n∑

m=0

(
n−1

m

)
K(n+m)
m (m) = nn−1. (13)
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Proof. 1. If n = p (prime) then by f. (8) we have
〈(

p
p−1

)〉
= 〈A(p)|B(p)〉

and recollecting item (3) of Lemma 1 and formula (10) we get
〈(

p
p−1

)〉
=

∑p−1
m=0 ambm + apbp =

∑p−1
m=0

λm

pm bm +
λp

pp+1 bp = Q
pp+1 where Q − λpbp =

Q − λp · 0 = Q = p2(λ0p
p−1b0 + . . . + λp−1bp−1) hence

〈(
p
p−1

)〉
= Q

pp−1 .
This fraction is evidently irreducible because λp−1 · bp−1 ≡ 1(mod p) and so
Denominator

〈(
p
p−1

)〉
= pp−1

2. Otherwise, if n is not prime and index s, 1 < s < n is such that gcd(n, s) > 1
then n is not inversible modulo s (compare the proof of Lemma 1, item 1)
and this s becomes an ‘extramultiplier ′ (besides nn−1) in the denominator of〈(

n
n−1

)〉
and hence this denominator cannot be equal to nn−1.

�

3. Concuding Remark
At the present moment we consider the Neville’s algorithm as the most convenient
tool for evaluation of the Denominator

〈(
n
n−1

)〉
(See theorem 1). The complexity

of this algorithm can be estimated as O(n2) [7].
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Investigation of the Periodic Planar Oscillations of
a Two-Body System in an Elliptic Orbit Using the
Polynomial Algebra Methods

Sergey A. Gutnik

Abstract. Computer algebra methods are used to investigate the planar os-
cillations of a system of two bodies connected by a spherical hinge that moves
along an elliptic orbit under the action of gravitational torque in the plane
of the orbit. The two-body system motion on an elliptic orbit is described by
the second order system of differential equations with the periodic coefficients.
Applying the perturbation techniques the periodic solution of the equations of
motion is constructed in the form of power series in a small parameter. Using
the proposed approach it is shown that the motion of the two-body system is
described by periodic oscillations in the plane of an elliptic orbit. All the rele-
vant symbolic computations are performed with the help of computer algebra
systems.

Introduction

This work presents the results of investigation the dynamics of a two-body system
(satellite and stabilizer) connected by a spherical hinge that moves in gravitational
field in the plane of an elliptical orbit using polynomial algebra methods. The dy-
namics of various schemes for satellite-stabilizer gravitational orientation systems
on a circular orbit was discussed in many papers, some review of them can be
found in papers [1, 2, 3].

Since the problem is very complicated, in the previous works we studied the
equilibrium orientations of the system on a circular orbit only in the simplest
cases when the spherical hinge is located at the intersection of the satellite and
stabilizer principal central axis of inertia and in the case where the spherical hinge
is positioned on the line of intersection between two planes formed by the principal
central axes of inertia of the satellite and stabilizer [3, 4, 5, 6, 7]. The application
of computer algebra makes it possible to find the solutions of this problem.
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On a circular orbit, there are spatial oscillations of a system of two connected
bodies at the vicinity of equilibria. In paper [8], the eigenoscillations of a system
of two bodies were studied and the parameters of the system, optimal in terms of
speed, were found for the transition of the system to equilibrium. A detailed study
of the oscillations of a satellite (a rigid body) in the plane of an elliptical orbit and
the conditions for their stability were carried out in [9].

The works devoted to the study of planar oscillations of a system of two cou-
pled bodies on an elliptic orbit were carried out only for simple cases, when the
centers of mass of the first and second bodies coincide [10], [11]. Here, we consider
the planar oscillations of a two-body system on an elliptic orbit in case when the
spherical hinge is located at the intersection of the first and second body princi-
pal central axis of inertia. Applying the perturbation techniques and appropriate
symbolic computations with the help of computer algebra system Wolfram Math-
ematica [12], we construct the periodic solution in the form of a power series in a
small parameter.

1. Equations of Motion

We consider the problem of two bodies connected by a spherical hinge that move on
an elliptic orbit. To write the equations of motion of two-body system, we introduce
the following right-handed Cartesian coordinate systems: OXY Z is the orbital
coordinate system, the OZ axis is directed along the radius vector connecting the
Earth center of mass C and the center of mass O of the two-body system, the OX
axis is directed along the linear velocity vector of the center of mass O, and the OY
axis coincides with the normal to the orbital plane. The axes of coordinate systems
O1x1y1z1 and O2x2y2z2, are directed along the principal central axes of inertia
of the first and the second body, respectively. The orientation of the coordinate
system Oixiyizi with respect to the orbital coordinate system is determined by
the aircraft angles αi (pitch), βi (yaw), and γi (roll) (see [3]).

Suppose that (ai, bi, ci) are the coordinates of the spherical hinge P in the
body coordinate system Oxiyizi, Ai, Bi, Ci are principal central moments of in-
ertia; M1M2/(M1 + M2) = M ; Mi is the mass of the ith body; ω is the angular
velocity for the center of mass of the two-body system moving along an elliptic
orbit. Then we use the expressions for kinetic energy of the system in the case
when b1 = b2 = c1 = c2 = 0 and the coordinates of the spherical hinge P in the
body coordinate systems are (ai, 0, 0) and when the motions of the two-body sys-
tem are located in the plane of the elliptic orbit (α1 6= 0, α2 6= 0, β1 = β1 = 0,
γ1 = γ2 = 0, α̇1 = dα1/dt, α̇2 = dα2/dt, where t is time) in the form [1]

T = 1/2
(
B1 +Ma21

)
(α̇1 + ω)2 + 1/2

(
B2 +Ma22

)
(α̇2 + ω)2

− Ma1a2 cos(α1 − α2)(α̇1 + ω)(α̇2 + ω). (1)
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The force function, which determines the effect of the Earth gravitational field on
the system of two connected by a hinge bodies, is given by [1]

U = −3µ/(2ρ3)
(
(A1 − C1)sin2α1 + (A2 − C2)sin2α2

)

+ 3/2Mµ/ρ3
(
(a1 sinα1 − a2 sinα2

)2
+Mµ/ρ3a1a2 cos(α1 − α2). (2)

Here ρ is a radial distance between the center of mass of the Earth C and center
of mass of the system O; µ = fM0, where f is a gravitational constant, and M0

is the mass of the Earth; ω = dϑ
dt = ω0(1 + e cosϑ)2; µ

ρ3 = ω2
0(1 + e cosϑ)3; ϑ is

the true anomaly and e is the orbital eccentricity. On the circular orbit ω = ω0,
µ
ρ3 = ω2

0 , ϑ = ω0t.
By using the kinetic energy expression (1) and the expression (2) for the

force function, the equations of motion for this system can be written as Lagrange
equations of the second kind by applying symbolic differentiation in the Wolfram
Mathematica system [12], [13]

d

dt

∂T

∂α̇i
− ∂T

∂αi
− ∂U

∂αi
= 0, i = 1, 2, (3)

in the form of a system of second-order ordinary differential equations in variables
α1 and α2 [1]

(B1 +Ma21)(α̈1 + ω̇)−Ma1a2(α̈2 + ω̇) cos(α1 − α2)

− Ma1a2
(
(α̇2 + ω)2 − µ/ρ3) sin(α1 − α2)

+ 3µ/ρ3
(
(A1 − C1 −Ma21) sinα1 +Ma1a2 sinα2

)
cosα1 = 0, (4)

− Ma1a2(α̈1 + ω̇) cos(α1 − α2) + (B1 +Ma21)(α̈2 + ω̇)

+ Ma1a2
(
(α̇1 + ω)2 − µ/ρ3) sin(α1 − α2)

+ 3µ/ρ3
(
(A2 − C2 −Ma22) sinα2 +Ma1a2 sinα1

)
cosα2 = 0,

which determine the oscillations of the system in the plane of the elliptic orbit in
the orbital coordinate system. In (4), the dot denotes differentiation with respect
to time t. One can easily check that the system (4) has the stationary solution

α1 = α2 = 0. (5)

Our goal is to obtain the periodic solution of the equations of motion (4) in the
form of a power series in a small parameter e (e� 1) in the neighborhood of the
stationary solution (5) with the help of computer algebra system.

2. Periodic solutions

To perform the calculations we assume that the oscillations are small and replace
the sine and cosine in (4) by their expansions in power series. Doing the substitu-
tion dt = dϑ/(ω0(1 + e cosϑ)2) in (4) we change the independent variable from t
to ϑ and reduce the system to the form
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− (1 + e cosϑ)α′′
2 + 2eα′

2 sinϑ+ (B1 +Ma21)/(Ma1a2)
(
(1 + e cosϑ)α1

′′

− 2eα′
1 sinϑ

)
− e(1 + e cosϑ)(α′

2 + 1)2 + e
(
2 sinϑ(1− (B1 +Ma21)/Ma1a2)

+ (4 + 3
(
(A1 − C1)−Ma21

)
/(Ma1a2)

))
= 0, (6)

− (1 + e cosϑ)α′′
1 + 2eα′

1 sinϑ+ (B2 +Ma22)/(Ma1a2)
(
(1 + e cosϑ)α2

′′

− 2eα′
1 sinϑ

)
+ e(1 + e cosϑ)(α′

1 + 1)2 + e
(
2 sinϑ(1− (B2 +Ma22)/Ma1a2)

+ (2 + 3
(
(A2 − C2)−Ma22

)
/(Ma1a2)

))
= 0.

The prime in (6) denotes differentiation with respect to ϑ. It is possible to check
that a general solution of nonlinear system (6) cannot be found in analytic form. It
is convenient for application of the perturbation techniques [14] and symbolic algo-
rithms proposed in paper [15]. However, we can seek for an approximate solution
in the form of power series in the small parameter e:

αi(ϑ) = eαi
(1)(ϑ) + e2αi

(2)(ϑ) + ..., (7)

Computation of unknown functions αi(ϑ) in (7) is done in accordance with the
techniques proposed in [14] and [15] requires quite tedious symbolic computations.
In this paper symbolic computations are performed using Wolfram Mathematica
functions: Expand,TrigExpand, Series,Normal, Replace,DSolve,NDSolve.

Substituting (7) into (6) and collecting coefficients of equal powers of e, we
obtain the set of systems of linear differential equations which can be solved in
succession. For example, using in (7) only the first linear elements we obtain the
corresponding periodic solutions in the form

α
(1)
1 (ϑ) = ā1sin(ϑ) + b̄1cos(ϑ), α

(1)
2 (ϑ) = ā2sin(ϑ) + b̄2cos(ϑ), (8)

where the coefficients ā1, b̄1, ā2, b̄2 can be defined from the linear algebraic system.
The amplitudes of the oscillations of the first and the second bodies have the
expressions

R2
1 = (ā21 + b̄21)e2 = 4

e2b2

d2
, R2

2 = (ā22 + b̄22)e2 = 4
e2b̄2

d2
, (9)

where

b = (B1 +Ma1(a1 − a2))(3(A2 − C2)−B2)− 4Ma2(a1B2 + a2B1),

b̄ = (B2 +Ma2(a1 − a2))(3(A1 − C1)−B1)− 4Ma1(a1B2 + a2B1), (10)
d = (3(A1 − C1)−B1)(3(A2 − C2)−B2)− 4Ma21(3(A2 − C2)−B2)

− 4Ma22(3(A1 − C1)−B1).

In the present work, we have considered the first approximation of the planar
oscillations of a system of two bodies connected by a spherical hinge that moves
along an elliptic orbit. We have found the expressions of the periodic motion of the
system in the linear approximation. All the relevant computations in this work are
performed with the computer algebra system Wolfram Mathematica. At the next
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step we will do the quadratic and cubic approximation of the periodic solutions
which have very cumbersome expressions.
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The zeros of random sections of real vector

bundles

Boris Kazarnovskii

Abstract. We de�ne integral geometric analogues of the Chern classes for
real vector bundle on a smooth real variety. More precisely, we de�ne the
Chern densities of a real bundle. These densities are analogues of the Chern
forms of a complex vector bundle and inherit some of their properties.

The zeros of random systems of functions

We begin with a theorem on the number of common zeros of random systems of
functions from [1]. Let V be a �nite-dimensional space of smooth functions on an
n-dimensional di�erentiable manifold X. Consider a random system of equations

f1 = . . . = fn = 0, 0 6= fi ∈ V (1)

Denote by N(f1, . . . , fn) the number of solutions of the system (1). We de�ne
the randomness of the system using a certain scalar product in V as follows: we
consider the functions fi as independent random vectors in V with respect to
the Gaussian measure chosen in V according to the chosen scalar product. The
situation with a more general choice of probability distribution in V is described
in [2]. Let M(V ) denote the expected value of the random variable N(f1, . . . , fn).
Next, for the calculation of M(V ), we will need the notion of a Banach set on X,
as well as the notion of a volume of the Banach set.

De�niton 1. Let T ∗X be a cotangent bundle ofX, and E(x) be a convex centrally
symmetric compact set in the cotangent space T ∗xX of X at the point x. The
collection E = {E(x) ⊂ T ∗xX |x ∈ X} is called a Banach set in X.

De�niton 2. Consider the domain
⋃

x∈X E(x) ⊂ T ∗(X). It's volume relative to
the standard symplectic structure in T ∗X is called the volume of Banach set and
is denoted by vol(E).
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For x ∈ X let's de�ne the linear functional θ(x) on V as θ(x)(f) = f(x). Next we
assume that ∀x ∈ X, ∃f ∈ V : f(x) 6= 0. That's why the set θ(X) in V ∗ does not
contain 0.

De�niton 3. Let's de�ne the mapping Θ: X → V ∗ as Θ(x) = θ(x)/
√
〈θ(x), θ(x)〉∗,

where 〈∗, ∗〉∗ is the scalar product in the space V ∗ associated with the scalar prod-
uct 〈∗, ∗〉 in V . Let dΘx : TxX → V ∗ be a di�erential of Θ at the point x. Denote
by d∗Θx : V → T ∗xX the adjoint linear operator, and de�ne the Banach set EV
by EV (x) = d∗Θx(B), where B is the unit ball in V centered at the origin. The
compact set EV (x) is an ellipsoid. We note that in a more general context discussed
in [Ka1], arbitrary Banach sets on X can arise.

Theorem 1. M(V ) = n!/(2π)n vol(EV )

Example 1. Let X be the unit circle S1, Vm the space of trigonometric polyno-
mials f(θ) =

∑
k≤m ak cos(kθ) + bk sin(kθ) of degree m. Then (see [6])

M(Vm) =

√
m(m+ 1)

3

For trigonometric polynomials in many variables see [7].

Now let's state a similar theorem in the case where we consider n spaces Vi
and equations f1 = . . . = fn = 0, where fi ∈ Vi. For this, we will need the concept
of the mixed volume of Banach sets. Using Minkowski sum and homotheties, we
can form linear combinations of convex sets with non-negative coe�cients. The
linear combination of Banach sets is de�ned by

(
∑

i

λiEi)(x) =
∑

i

λiEi(x).

For n Banach sets E1, . . . , En the volume of λ1E1 + . . . + λnEn is a homogeneous
polynomial of degree n in λ1, . . . , λn. Its coe�cient at λ1 · . . . · λn divided by n! is
called the mixed volume of Banach sets E1, . . . , En. The mixed volume of Banach
sets E1, . . . , En is denoted by vol(E1, . . . , En).

Theorem 2. Let M(V1, . . . , Vn) denote the expectation of the random variable

N(f1, . . . , fn). Then it holds that

M(V1, . . . , Vn) =
n!

(2π)n
vol(EV1 , . . . , EVn)

The ring of Banach sets

Next we need a concept of the ring of Banach sets. It arises as an analogue of the
well-known concept of a ring of convex bodies, �rst de�ned in [3]. There are several
di�erent versions of this concept. Here we construct an analogue of the de�nition
from [4]. We call the formal di�erence E − B of Banach sets the virtual Banach

set. Virtual Banach sets form a vector space, where multiplication by negative
numbers is de�ned by (−1) · (E − B) = B − E .
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The following notations are used below

• S =
⊕

0≤i Si � the graded symmetric algebra of the space of virtual Banach sets
on the manifold X

• I � the linear functional on the space S de�ned by 1) ISk
= 0 for k 6= n, and 2)

I(E1 · . . . · En) = vol(E1, . . . , En)

• L(x, y) = I(x · y) � the symmetric bilinear form on the vector space S

• J � the kernel of the form L.

Lemma 1. J is a homogeneous ideal of the graded ring S.

We will call ring S = S/J the ring of virtual Banach sets.

Corollary 1. The following statements hold:

(i) S0 = R
(ii) dimSn = 1

(iii) The graded ring S is generated by elements of degree 1

(iv) The mappings Sp×Sn−p → R, de�ned as (η, ξ) 7→ L(η, ξ), are non-degenerate

pairings.

Next for n virtual Banach sets B1, . . . ,Bn, we use the notation

vol(B1 · . . . · Bn) = I(B1 · . . . · Bn) = vol(B1, . . . ,Bn)

Zeros of random sections

Transitioning to zeros of random sections of vector bundles, without formulating
precise theorems, we will �rst brie�y describe the situation in the case when con-
sidering zeros of sections of an n-dimensional vector bundle F on X. Just as in
the case of functions we consider a �nite dimensional space V of smooth sections
of F . Here we denote by M(V ;U) the expectation of the number of zeros of ran-
dom section s ∈ V contained in the open set U ⊂ X. By ResUB we denote the
constraint of B ∈ S on the subvariety U .

Theorem 3. There exists the unique element B ∈ Sn, such that for any U ⊂ X

M(V ;U) =
n!

(2π)n
vol(ResUB)

Further results can be approximately described as follows. We associate to
an element s of degree k of the ring of Banach sets S a certain k-density dk(s)
on X and interpret the ring S as a ring of these densities. Such densities serve as
analogues of Chern forms, representing Chern classes of complex vector bundles,
and inherit some properties of Chern forms.

In conclusion, let us de�ne the density dk(s). An alternative construction of
multiplication in the density ring is given in [1]; see also [5].
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De�niton 4. LetH be the subspace of TxX generated by tangent vectors ξ1, . . . , ξk,
H⊥ ⊂ T ∗xX the orthogonal complement to H, and πH : T ∗xX → T ∗xX/H

⊥ the pro-
jection map. The volume form on T ∗xX/H

⊥ is de�ned by ω(x) = ξ1 ∧ . . .∧ ξm. Let
B1, . . . ,Bk be Banach sets on X. Then dk(B1 · . . . · Bk)(ξ1, . . . , ξm) is the mixed
k-dimensional volume of convex k-dimensional sets πHB1(x), . . . , πHBk(x) in the
sense of the volume form ω(x).

The following statement is an analogue of the BKK formula for Banach sets
and for densities di.

Theorem 4. For any Banach sets B1, . . . ,Bk the equality

d1(B1) · . . . · d1(Bk) = k! dk(B1 · . . . · Bk)

holds.
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On Multicomponent Continued Fraction Expan-

sions of Hypernumbers of Certain Classes

Khryashchev S. M.

Abstract. A new class of multicomponent continued fractions is investigated.
It is assumed that on the set of approximated elements some algebraic struc-
tures can be de�ned that allow the elements of these original sets to be con-
sidered as hypernumbers. This makes it possible to signi�cantly simplify the
research and transfer many well-known properties of classical continued frac-
tions to the case under consideration. In this paper, conditions for approxi-
mating elements of the original sets by multicomponent continued fractions
and estimating the rate of convergence are obtained.

Introduction

The theory of representing of real numbers by classical continued fractions is given
in many works. There are known results on continued fraction expansions for
complex numbers, see for example [1]. There are also some results on generalized
continued fractions. Many needs of applied sciences lead to the problem of approx-
imation of multidimensional real parameters by a set of rational numbers with the
same denominators. To solve such problems, multicomponent continuous fractions
can be used. In this paper which continues papers [2], [3] and others, a new class
of multicomponent continued fractions is investigated. Multicomponent continued
fractions are interpreted as multicomponent scalars. They are elements of some
algebra which is a set of elements with two arithmetic operations. Quaternions are
considered as a basic example of such algebra.

1. Basic concepts of the theory of continued fractions

Let a0, a1, . . . , an, . . . be some sequence of characters. A �nite continued fraction
is given in the form

a0 + (a1 + · · ·+ (an−1 + (an)
−1)−1 . . . )−1, (1)
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which can also be written as an ordinary fraction.

An in�nite continued fraction is given in the form

a0 + (a1 + · · ·+ (an−1 + (an + . . . )−1)−1 . . . )−1. (2)

In the sequel, we intend to consider continued fraction expansions for a certain
set of scalars. Note that commutativity is not assumed for multiplication. Further,
we assume that in the set of scalars there is a certain lattice, the elements of
which are �integers�. Thus, the numbers an are elements of the lattice G . We also
assume that the set of scalars is some Euclidean space, i.e. a norm of an element
is determined. Below, we give estimates of the rate of convergence of convergent
fractions to decomposed elements.

1.1. Euclidean Algorithm and Iteration sequences

The continued fraction expansion of z can be obtained by applying of the Euclidean
algorithm. For n = 0, 1, 2, . . . , a recurrent sequence αn is constructed, where α0 =
z. For any n, an = [αn] is the whole part of the element αn. It may depend on the
method of rounding and on number n. Next, the fractional part is determined by
formula ⟨αn⟩ = αn − an.

The previous formula can be rewritten as

an = αn − (αn+1)
−1 ∈ G, n = 0, 1, 2, . . . . (3)

The sequence αn is called an iteration sequence.

1.2. Convergent fractions

A �nite continued fraction of the form (1) can be written as a common fraction.
It is called a suitable fraction for the number α ∈ T, where T is some algebra.
Since we do not assume that multiplication is commutative, there are two possible
representations for a convergent fraction

r′n = (q′n)
−1p′n, r′′n = p′′n(q

′′
n)

−1, (4)

which give the same value, i.e.

r′n = r′′n =: rn, n = 0, 1, 2, . . . .

The (�nite or in�nite) sequence rn, n = 1, 2, . . . is called a sequence of con-
vergent fractions.

It can be shown that the quantities p′n and q′n, as well as p
′′
n and q′′n, satisfy

the Euler equations where, respectively, the left and right pairs of equations for
n ≥ 1 have the following forms

p′−1 = 1, p′0 = a0, p′n+1 = an+1p
′
n + p′n−1, (5)

q′−1 = 0, q′0 = 1, q′n+1 = an+1q
′
n + q′n−1, (6)
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and

p′′−1 = 1, p′′0 = a0, p′′n+1 = p′′nan+1 + p′′n−1, (7)

q′′−1 = 0, q′′0 = 1, q′′n+1 = q′′nan+1 + q′′n−1. (8)

1.3. Auxiliary statements

Next, we show that the pairs (p′n, p
′′
n) and (q′n, q

′′
n) change consistently. Thus, the

following statements are true.

Lemma 1. The relations are valid:

Vn−1,n := p′n−1q
′′
n − q′n−1p

′′
n = (−1)n, (9)

Vn.n−1 := p′nq
′′
n−1 − q′np

′′
n−1 = (−1)n. (10)

Lemma 2. The relations are valid:

P ′
n = P ′′

n , Q′
n = Q′′

n, (11)

where P ′
n = p′n(p

′
n−1)

−1 and Q′
n = q′n(q

′
n−1)

−1 .

Let q2n := |q′n|2 = |q′′n|2. Then |qn| :=
√
q2n.

2. The main theorems on continued fractions

By formulas (9) and (10), we have the following relations:

zq′′n − p′′n = (−1)n(αn+1q
′′
n + q′′n−1)

−1 = (−1)n(q′′n)
−1(αn+1 + (Q′′

n)
−1), (12)

q′nz − p′n = (−1)n(q′nαn+1 + q′n−1)
−1 = (−1)n(αn+1 + (Q′

n)
−1)(q′n)

−1. (13)

Theorem 1. For residuals, the following relations are valid

|zq′′n − p′′n| = |q′nz − p′n| =
1

|αn+1 + (Qn)−1|
1

|qn|
, (14)

|z − rn| =
1

|αn+1 + (Qn)−1|
1

|qn|2
. (15)

2.1. Some special conditions for the convergence of continued fractions

In formulas (14) and (15), the inequalities |αn+1| > 1 and |(Qn)
−1| < 1 are true for

all n. However, this does not guarantee that the denominators of the fractions are
separated from zero. To ensure this condition, we introduce additional enhanced
restrictions:

|αn+1| ≥ α > 1& |(Qn)
−1| < 1, (16)

or

|(Qn)
−1| ≤ 1− c−1 < 1& |αn+1| > 1. (17)
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Remark 1. The inequalities αn ≥ α > 1 from formula (17) can be interpreted as
conditions of strong non-degeneracy of a iteration sequence. In some cases, these
may be provided by selecting of a rounding function. Inequalities |Q−1

n | ≤ c−1 < 1
from formula (17) is equivalent to the inequalities |qn| > c|qn−1|. These relations
are strong conditions for exponential growth of denominators of a convergent frac-
tion.

By the triangle inequality, for C = min{α− 1, 1− c−1}, c > 1, the following
condition is satis�ed:

0 < C ≤ |αn+1 + (Qn)
−1|, n ≥ 0. (18)

Theorem 2. Let condition (17) be satis�ed. Then the following estimates for the
residuals are valid:

|q′nz − p′n| = |zq′′n − p′′n| ≤
1

C|qn|2
, (19)

|z − rn| ≤
1

C|qn|2
.

Conclusion

The results obtained in this work were used to solve some control theory problems
related to determining switching instants at discrete times, [3].
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On the parameterizations of the special unitary
group SU(4) and related double cosets

Arsen Khvedelidze, Dimitar Mladenov and Astghik Torosyan

A nice structure of Lie groups due to their dual nature of being a group
and a manifold simultaneously reveals in a rich variety of different types of co-
ordinates on the group manifold. Among them traditionally used parameteriza-
tions in mathematics and theoretical physics are those related to the case when
coordinates on the group manifold provide the projected coordinates on the cor-
responding quotients or bi-quotients obtained as a result of group action. There
is a big amount of general results on the topological properties [1] and explicit
constructions of different parameterization of compact Lie groups well adapted to
either cosets or the double cosets description. Among them one can point out the
classical results based on the Cartan involution [2], their generalization associated
to a pair of the non-commutative involutions [3], and classification of all possible
Kobayashi triples of the form (U(n), U(p)× U(q) , U(n1)×U(n2)× · · · ×U(nl)),
with n = p + q = n1 + n2 + · · ·+ nl [5].

In the present report we are not aiming to discuss the general theory of double
coset description, but our less ambitious goal is to tackle the issue of parameter-
izations for the special unitary group SU(4) adapted to the description of double
coset related to the triplet (SU(4), SU(2)×SU(2), T3) comprised of the maximal
torus T3 and the subgroup SU(2)×SU(2) ⊂ SU(4). Based on the suggested “co-
ordinatization”, the Riemannian bi-invariant metric on group manifold is derived
and the corresponding volume 15-form is calculated.

References
[1] W. Singhof, On the topology of double coset manifolds, Math.Ann. 297, 133-146, 1993.
[2] M.M. Postnikov, Lectures in Geometry: Lie Groups and Lie Algebras. Semester 5,

English translation, Mir Publishers, 1986.
[3] T. Matsuki, Double coset decompositions of algebraic groups arising from two involu-

tions, Journal of Algebra, v. 175, N3, 865-925, 1995.
[4] C. Miebach, Matsuki’s double coset decomposition via gradient maps, Journal of Lie

Theory, Volume 18, 555-580, 2008.

75



2 Arsen Khvedelidze, Dimitar Mladenov and Astghik Torosyan

[5] T. Kobayashi, A generalized Cartan decomposition for the double coset space (U(n1)×
U(n2)× U(n3))\U(n)/(U(p)× U(q)), Journal of the Mathematical Society of Japan,
59(3), 669-691, 2007.

Arsen Khvedelidze
A Razmadze Mathematical Institute
Iv. Javakhishvili, Tbilisi State University
Tbilisi, Georgia
Institute of Quantum Physics and Engineering Technologies
Georgian Technical University
Tbilisi, Georgia
Laboratory of Information Technologies
Joint Institute for Nuclear Research
141980 Dubna, Russia
e-mail: akhved@jinr.ru

Dimitar Mladenov
Faculty of Physics
Sofia University “St. Kliment Ohridski”
Sofia, Bulgaria
e-mail: dimitar.mladenov@phys.uni-sofia.bg

Astghik Torosyan
Laboratory of Information Technologies
Joint Institute for Nuclear Research
141980 Dubna, Russia
A.I. Alikhanyan National Science Laboratory (YerPhI)
Yerevan, Armenia
e-mail: astghik@jinr.ru

76



Finite groups and quantum mechanics:
evolution and decomposition of quantum systems

Vladimir V. Kornyak

Abstract. Quantum mechanics is based on two main points: (1) the assumption
that the evolution of a closed system is described by unitary transformations in
Hilbert space, and (2) the idea of observation, formalized in the concept of an
observable and canonical commutation relations between pairs of conjugate ob-
servables. We call such conjugate pairs complementary, since they form the basis
of Borh’s complementarity principle.

The combined use of complementary observables allows us to obtain the max-
imum available information about the state of a quantum system. Complementary
observables are related to such issues as the uncertainty principle, the principle
of least action, the path integral formulation of quantum mechanics, mutually
unbiased bases etc.

Replacing a continuous unitary group with a finite permutation group in the
quantum formalism [1–4] allows us to reduce the description of evolution to the
group of cyclic permutations ZN . The product of ZN and its Pontryagin dual,
Z̃N , has a nontrivial projective representation, which allows to describe quantum
interferences taking into account phase differences.

Thus, by starting with just a cyclic permutation, we obtain a complete finite
version of quantum mechanics, including unitary evolution and the complementar-
ity principle. Finite structures that stem from cyclic permutations are naturally
found in various fields, including quantum computer science and signal processing.
These finite structures were first discovered, within the framework of continuous
quantum mechanics, by Weyl when he constructed an analogue of the Heisenberg
canonical commutation relations suitable for finite-dimensional Hilbert spaces.

The generator of the regular representation of ZN on the N -dimensional
Hilbert space HN is the cyclic permutation matrix

X =




0 0 · · · 1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0


 .
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The matrix X is related to the basis BX = {|0⟩ , |1⟩ , . . . , |N − 1⟩}, called the
position basis. This basis has other names, such as ontic (G. ’t Hooft) or initial,
or computational (quantum computer science).

In this basis, the position operator has the diagonal form x̂ =

N−1∑

x=0

x |x⟩⟨x| .

If gcd(v,N) = 1, then the matrix Xv = Xv defines a cyclic evolution on the
eigenvalues of the position operator x̂t = Xt

vx̂0X
−1
v . In the components we have

xt = x0 + vt mod N.

Therefore, the parameter v can be interpreted as “velocity”.
The generator of the Pontryagin dual group Z̃N is

Z = X̃ = FXF ∗ =




1 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 · · · ωN−1


 ,

where F is the Fourier transform and ω = e2πi/N is the Nth base root of unity.
The basis BZ =

{∣∣∣0̃
〉
,
∣∣∣1̃
〉
, . . . ,

∣∣∣Ñ − 1
〉}

formed by the eigenvectors of Z is called
the momentum basis.

The bases BX and BZ are interconnected by the Fourier transform, and they
are mutually unbiased.

A direct calculation reveals that XZ = ωZX. This is precisely the Weyl
canonical commutation relation. The operators X and Z generate a non-trivial
projective representation of the group ZN × Z̃N

∼= ZN × ZN on the space HN .
The main constructs derived from the matrices X and Z are:

• Weyl–Heisenberg group

H(N) =
{
τkXvZm

}
,

where τ = −ω1/2 = − eπi/N, v,m ∈ ZN , k ∈ ZN , N =

{
N, N is odd,
2N, N is even.

• Finite position-momentum phase space T 2 is a 2D discrete torus of sizeN×N .
• Symplectic group Sp(2,ZN ) is the group of symplectic transformations of the

phase space T 2.
• Clifford group Cℓ(N) ∼= H(N)⋊Sp(2,ZN ) is the normalizer of H(N) in U(N).

It is the group of all symmetries of the group H(N): Cℓ(N) ∼= Aut(H(N)).

The properties of the operators X and Z and the constructions derived from
them, as well as the possibility of decomposing the corresponding quantum system
into subsystems, are determined by the structure of the group ZN . A decomposition
of a cyclic group into smaller groups has the form

ZN
∼= Zn1

× Zn2
× · · · × Znm

, (1)
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where N = n1 · n2 · . . . · nm, gcd(ni, nj) = 1. The canonical decomposition takes
the form ZN

∼= Z
p
ℓ1
1
×· · ·×Zpℓm

m
, where N = pℓ11 · · · pℓmm is the prime factorization.

Mappings that provide isomorphism (1), which can be considered as an
isomorphism of rings, can be calculated using the Chinese remainder theorem.
Namely, for k ∈ ZN we have the mappings

k 7→ (r1, . . . , rm) ,

(r1, . . . , rm) 7→ k =
m∑

i=1

riN
−1
i Ni mod N,

where ri = k mod ni ∈ Zni , Ni = N/ni ∈ ZN , N−1
i ∈ Zni is the multiplicative

inverse of Ni within Zni
.

Dual mappings, which are more useful for many problems, have the form

k 7→ (k1, . . . , km) ,

(k1, . . . , km) 7→ k =

m∑

i=1

kiNi mod N, (2)

where ki = riN
−1
i ∈ Zni

. For example, the equation
k

N
=
∑

i

ki
ni

mod 1, (3)

which follows from (2), helps us to understand the additivity of the energy in a
composite quantum system: in representing the frequency of a system as a sum of
frequencies of subsystems, frequencies can be interpreted as corresponding energy
levels in accordance with the Planck relation, which states the equivalence of energy
and frequency.
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On coefficients of the Berenstein-Kazhdan decora-
tion functions for classical groups

Gleb Koshevoy and Denis Mironov

Abstract. For type An, SLn+1(C), all coefficients of the BK decoration func-
tion are equal one, because all weights are minuscule. This is not the case for
other types. For types BCD, we prove that the coefficients are powers of two
(zero power is one). We propose an algorithm which computes these coeffi-
cients. The complexity of the algorithm is comparable with the complexity of
writing the BK decoration function.

1. i-trails and generalized minors
1.1. Notation
Let G be a simply connected connected simple algebraic group or rank r, B, B− ⊂
G its Borel subgroups, T := B ∩B− the maximal torus, W = NormG(T )/T Weyl
group, U , U− be unipotent radicals of B, B−, A = (ai,j) the Cartan matrix of
G with an index set I = {1, 2, · · · , n}. We define g = Lie(G) with Chevalley
generators ei, fi, hi (i ∈ I), a Cartan subalgebra h and the canonical pairing 〈, 〉
between h and h∗. Let Λi denote the i-th fundamental weight, that is, 〈hj ,Λi〉 = δj,i
and P = ⊕i∈IZΛi be the weight lattice, P+ = ⊕i∈IZ≥0Λi the positive weight
lattice, P ∗ = ⊕i∈IZhi the dual weight lattice, {αi} (i ∈ I) the set of simple
roots. For each λ ∈ P+, let V (λ) denote the finite dimensional irreducible g-
module with highest weight λ. Let Uq(g) be the quantized universal enveloping
algebra with generators Ei, Fi (i ∈ I) and Kλ (λ ∈ P ) and Uq(g)− ⊂ Uq(g)
be the subalgebra generated by {Fi}i∈I . It is well-known that Uq(g)− has the
crystal base (L(∞), B(∞)). For two integers l, m ∈ Z such that l ≤ m, one sets
[l,m] := {l, l + 1, · · · ,m− 1,m}.
1.2. A birational map
Let us recall a definition of B−w0

, where w0 is the longest element in W , and an
open embedding (C×)N ↪→ B−w0

associated with a reduced word i = (i1, i2, · · · , iN )
of w0.
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First, for i ∈ I and t ∈ C, we put

xi(t) := exp(tei), yi(t) := exp(tfi) ∈ G.
There exists the canonical embedding φi : SL2(C)→ G satisfying

xi(t) = φi

((
1 t
0 1

))
, yi(t) = φi

((
1 0
t 1

))
.

Using the embedding, one puts

thi := φi

((
t 0
0 t−1

))
∈ T

and

x−i(t) := yi(t)t
−hi = φi

((
t−1 0
1 t

))
∈ G

for i ∈ I and t ∈ C×. One can construct a representative of a simple reflection
si ∈W = NormG(T )/T by

si := xi(−1)yi(1)xi(−1) ∈ NormG(T )

for each i ∈ I. For w ∈ W , one can define a representative w ∈ NormG(T ) by the
rule

uv = u · v if l(uv) = l(u) + l(v),

where l is the length function on W . We define a variety B−w0
:= B−∩Uw0U . One

defines a map θ−i : (C×)N → G associated with a reduced word i = (i1, · · · , iN ) of
w0 ∈W by

θ−i (t1, · · · , tN ) := x−i1(t1) · · ·x−iN (tN ). (1.1)

Proposition 1.1 ( [2]). The map θ−i is an open embedding from (C×)N to B−w0
.

1.3. Generalized minors and i-trails
Let G0 := U−TU ⊂ G denote the open subset whose elements x ∈ G0 are uniquely
decomposed as x = [x]−[x]0[x]+ with some [x]− ∈ U−, [x]0 ∈ T and [x]+ ∈ U .

Definition 1.2 ( [4]). For u, v ∈ W and i ∈ I, the generalized minor ∆uΛi,vΛi is
defined as the regular function on G such that

∆uΛi,vΛi(x) = ([u−1xv]0)Λi

for any x ∈ uG0v
−1. Here, for t ∈ C× and j ∈ I, we define (thj )Λi = (tΛi(hj)) and

extend it to the group homomorphism T → C×.

For calculations of generalized minors, one can use i-trails [2]. Here in this
subsection, we take i = (i1, · · · , il) as a sequence of indices from I. Let us review
pre-i-trails and i-trails.

Definition 1.3. For a finite dimensional representation V of g, two weights γ, δ
of V and a sequence i = (i1, · · · , il) of indices from I, a sequence π = (γ =
γ0, γ1, · · · , γl = δ) is said to be a pre-i-trail from γ to δ if γ1, · · · , γl−1 ∈ P and for
k ∈ [1, l], it holds γk−1 − γk = ckαik with some nonnegative integer ck.
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We can easily check that for k ∈ [1, l], it holds

ck =
γk−1 − γk

2
(hik). (1.2)

Definition 1.4 ( [2]). We consider the setting of Definition 1.3. If a pre-i-trail π
from γ to δ satisfies the condition
• ec1i1 e

c2
i2
· · · eclil is a non-zero linear map from Vδ to Vγ ,

then π is said to be an i-trail from γ to δ, where V = ⊕µVµ is the weight decom-
position of V .

For a pre-i-trail π = (γ0, γ1, · · · , γl) and k ∈ [1, l], we put

dk(π) :=
γk−1 + γk

2
(hik). (1.3)

One obtains dk(π) = ck + γk(hik) ∈ Z by (1.2). If γk−1 = sikγk then dk(π) = 0.

Lemma 1.5 ( [8]). Let γ, δ be weights of a finite dimensional representation V of
g. Let i = (i1, · · · , il) be a sequence of indices from I and π = (γ0, γ1, · · · , γl),
π′ = (γ′0, γ

′
1, · · · , γ′l) be two pre-i-trails from γ to δ. If dk(π) = dk(π′) for all

k ∈ [1, l] then π = π′.

For a sequence i = (i1, · · · , il) of indices from I and t1, · · · , tl ∈ C×, just as in
(1.1), we set

θ−i (t1, · · · , tl) := x−i1(t1) · · ·x−il(tl) ∈ G.
Then the following theorem holds:

Theorem 1.6 ( [2]). For u, v ∈W and i ∈ I, it holds
∆uΛi,vΛi(θ

−
i (t1, · · · , tl)) =

∑

π

Cπt
d1(π)
1 · · · tdl(π)

l ,

where Cπ is a positive integer and π runs over all i-trails from −uΛi to −vΛi in
V (−w0Λi).

By this theorem and Lemma 1.5, for each monomialM in ∆uΛi,vΛi(θ
−
i (t1, · · · , tl)),

there uniquely exists a corresponding i-trail π from −uΛi to −vΛi satisfying
M = t

d1(π)
1 · · · tdl(π)

l .

2. The Berenstein-Kazhdan decoration functions and i-trails
2.1. Geometric crystal structure on B−w0

Defining maps

γi : B−w0
→ C×, εi : B−w0

→ C×, ei : C× ×B−w0
→ B−w0

on B−w0
= B−∩Uw0U , we get a g-geometric crystal (B−w0

, {ei}i∈I , {γi}i∈I , {εi}i∈I)
[1]. For the definition of maps, refer to Sect.3 of the paper [8].

The variety T ·B−w0
has a positive structure θi : T ×(C×)l(w0) → T ·B−w0

asso-
ciated with each reduced word i of w0 so that we obtain a crystalX∗(T×(C×)l(w0))
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by the tropicalization functor. The Berenstein-Kazhdan decoration function ΦBK
on T ·B−w0

is defined as

ΦBK =
∑

i∈I

∆w0Λi,siΛi

∆w0Λi,Λi

+
∑

i∈I

∆w0siΛi,Λi

∆w0Λi,Λi

. (2.1)

Here, Λi is the i-th fundamental weight, for u, v ∈ W , the function ∆uΛi,vΛi is a
generalized minor.

Let us define a regular function ΦhBK on B−w0
as follows:

ΦhBK :=
∑

i∈I
∆w0Λi,siΛi .

In [13], Kanakubo and Nakashima proved that the function ΦhBK is an upper half-
decoration on the geometric crystal B−w0

.
An open embedding θ−i : (C×)N ↪→ B−w0

in Proposition 1.1, which gives a
positive structure on (B−w0

,ΦhBK). Thus, one obtains a crystal Bθ−i ,ΦhBK

B̃θ−i ,ΦhBK
:= {z ∈ X∗((C×)N )|Trop(ΦhBK ◦ θ−i )(z) ≥ 0},

Bθ−i ,ΦhBK
= (B̃θ−i ,ΦhBK

, {ẽi}i∈I , {f̃i}i∈I , {ε̃i}i∈I , {ϕ̃i}i∈I , {γ̃i}i∈I). (2.2)

Here, we omitted the notation of restrictions |B̃
θ
−
i
,Φh

BK

for ẽi, f̃i, ε̃i, ϕ̃i and γ̃i.

Theorem 2.1 ( [13]). For each reduced word i of the longest element w0, the set
Bθ−i ,ΦhBK

is a Lg-crystal isomorphic to the crystal B(∞).

2.2. i-trails and BK decoration functions
The main result of ( [9], Theorem 4.4) allows us, for all reduced words i, to get
all monomials in ∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ) explicitly in the following cases (the
numbering of Dynkin diagram is same as in [6]), which covers a significantly wide
range of indices i ∈ I comparing with [8]. Due to this theorem is computed an

g An Bn Cn Dn E6 E7 E8 F4 G2

i all i ∈ I all i ∈ I all i ∈ I all i ∈ I 1, 2, 4, 5, 6 1, 5, 6, 7 1, 7 1, 4 all i ∈ I

edge-colored directed graph DG whose vertices are labelled by the monomials in
∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ), and edges are colored by letters of {1, 2, · · · , N}. We
only use easy computations of the Weyl group action on simple roots and weights
and multiplications of Laurent monomials. In particular, in case of g is of classical
type (An, Bn, Cn or Dn) or type G2, by the tropicalization, we get an explicit
form of the crystal

{z ∈ X∗((C×)N )|Trop(ΦhBK ◦ θ−i )(z) ≥ 0}, (2.3)

for any reduced word i.
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2.3. Algorithm for computing coefficients of BK decoration functions for classical
types ABCD

A problem on computing coefficients of Berenstein-Kazhdan decoration arises in
study of redundant inequalities defining the cone (2.3) (see [10]).

In case of g is of classical type An, all weights are minuscule, and because of
that all coefficients are equal one [8], and there are no redundancy [10].

In case of g is of classical type Bn, Cn or Dn this is not the case. We have
the following

Theorem 2.2. In case of g is of classical type Bn, Cn or Dn, coefficients with
i-trails take the form 2k, k ≥ 0.

For any reduced decomposition i, the portion of i-trails π with coefficients
bigger than 1 is rather small, and we have an algorithm for computing such cases.

For the proof of Theorem 3.2 we provide an algorithm to compute all co-
efficients in ∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ). Firstly, we use the algorithm of [9] (see
also [11]) to get monomials in ∆w0Λi,siΛi◦θ−i (t1, · · · , tN ), and edge-colored directed
graph DG. Then we apply the following procedure:

set S=all monomials
set k=1
while S is not empty

S1=get all pairs (a,b) of S,
such that a*b is perfect square Laurent monomial

for each pair (a,b)∈S1 set coefficient of
√
a ∗ b to 2k

set S=S1

The proof of correctness of this algorithm is essentially the proof of Theorem
3.2. To elaborate why this algorithm always halts we use correspondence between
monomials with coefficients 2k and k-dimensional faces of Newton polytope of
∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ) ( [3]), so it runs no more than length of w0 cycles.

This procedure can also be used to compute Gross-Hacking-Keel-Kontsevich
potential with proper coefficients [11] (set same coefficients for corresponding
monomials) and prove that coefficients of Gross-Hacking-Keel-Kontsevich poten-
tial take the form 2k, k ≥ 0.

2.4. Algorithm complexity
From [11] we know that complexity of computing ∆w0Λi,siΛi ◦ θ−i (t1, · · · , tN ) con-
sisting of K monomials is

O(r4K) ∼ O(r2 ∗ length of string representation)

where length of string representation ∼ O(r2K). Overall complexity of computing
coefficients is bounded by product of number of cycles (length w0 ∼ r2) and square
of number of monomials

O(r2 ∗K2) ≤ O(length of string representation2).
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This means that whole Berenstein-Kazhdan decoration function and Gross-Hacking-
Keel-Kontsevich potential computation algorithm is polynomial (square) in length
of string representation of answer.
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Solution of Tropical Best Approximation Problems

Nikolai Krivulin

Abstract. We consider discrete best approximation problems in the frame-
work of tropical algebra, which focuses on semirings and semifields with idem-
potent addition. Given a set of samples from input and output of an unknown
function defined on an idempotent semifield, the problem is to find a best ap-
proximation of the function by tropical Puiseux polynomial and rational func-
tions. We describe a solution approach that transforms the problem into the
best approximation of linear vector equations. Application of this approach
yields a direct analytical solution for the polynomial approximation problem
and an iterative algorithmic solution for approximation by rational functions.
As an illustration, we present results of the best Chebyshev approximation
by piecewise linear functions.

Introduction
We consider a discrete approximation problem where an unknown function f(x) is
approximated given a set of samples (xi, yi) of function values yi = f(xi) at some
points xi. Let F (x;θ) be an approximating function that depends on the vector θ
of unknown parameters. A minimax best approximate solution to the problem is
defined in the sense of a distance function d to find

θ∗ = argmin
θ

max
i
d(F (xi;θ), yi). (1)

In this paper, we outline recent results concerning the investigation of the
best approximation problem in the framework of tropical algebra, which deals
with the theory and methods of semirings and semifields with idempotent addition
[1, 2, 3, 4, 5, 6]. An example of the tropical semifield is an extended set of reals,
where the addition is defined as maximum and the multiplication as arithmetic
addition (max-plus algebra).

We formulate problem (1) to approximate functions defined on a tropical
semifield (a semiring with idempotent addition and invertible multiplication). As
approximating functions, we use tropical analogues of Puiseux polynomials and
rational functions. The approximation error is defined by a generalized metric on
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the tropical vector space over the semifield. We note that in the case of max-plus
algebra, the Puiseux polynomials and rational functions are real piecewise linear
functions, whereas the metric coincides with the Chebyshev metric.

Tropical Puiseux polynomials arise in a range of research contexts from trop-
ical algebraic geometry to optimization problems in operations research [4, 6, 7,
8, 9]. Thus, the development of approximation techniques using tropical Puiseux
polynomial and rational functions can be considered of benefit to both tropical
algebra and its applications.

To solve the best approximation problems under study, we transform them
into solving tropical linear vector equations with an unknown vector on one side
(one-sided equations) or on both sides (two-sided equations). We handle the one-
sided equation by applying the results in [10, 11], which offer a direct analytical
solution to the problem. A best approximate solution of the two-sided equation
is obtained by using the iterative alternating algorithm proposed in [12]. Further
details on the solution approach and its implementation can be found in [13].

1. Definitions, Notation and Preliminary Results

In this section we outline basic definitions, notations and preliminary results that
provide a framework for the description of the solutions of tropical approximation
problems presented below. For more details on tropical (idempotent) algebra, one
can consult several works, including [1, 2, 3, 4, 5, 6].

1.1. Idempotent Semifield

Let X be a non-empty set that is equipped with binary operations ⊕ (addition) and
⊗ (multiplication), and contains distinct elements 0 (zero) and 1 (unit). Assume
that (X,⊕,0) is an idempotent commutative monoid, (X \ {0},⊗,1) is an Abelian
group and multiplication ⊗ distributes over addition ⊕. The algebraic system
(X,⊕,⊗,0,1) is commonly referred to as the tropical (idempotent) semifield.

The semifield has idempotent addition: for each x ∈ X the equality x⊕x = x
holds, and invertible multiplication: for each x ̸= 0, there exists x−1, such that
xx−1 = 1 (here and hereafter the multiplication sign ⊗ is omitted for brevity). It
is assumed that the equation xp = a has a unique solution x for any a ∈ X and
integer p > 0, which makes powers with rational exponents well defined.

Idempotent addition induces a partial order relation: x ≤ y if and only if
x⊕ y = y. The corresponding partial order is assumed to extend to a total order.

An example of the idempotent semifield under consideration is the real semi-
field Rmax,+ = (R ∪ {−∞},max,+,−∞, 0), also known as max-plus algebra. In
this semifield, we have ⊕ = max, ⊗ = +, 0 = −∞ and 1 = 0. The power xy
coincides with the product x× y. The inverse x−1 of any x ∈ R corresponds to the
opposite number −x. The order relation agrees with the usual linear order on R.
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1.2. Algebra of Matrices and Vectors
Matrix algebra over over a semifield is introduced in the usual way. Addition, multi-
plication and scalar multiplication of matrices follow the standard entrywise rules,
where addition and multiplication are replaced by ⊕ and ⊗. A matrix without
zero rows and columns is called regular.

A matrix that consists of a single column (row) is a column (row) vector. If
a vector has no zero elements, it is called regular.

For any nonzero column vector x = (xj), the multiplicative conjugate is the
row vector x− = (x−j ) where x−j = x−1

j if xj ̸= 0, and x−j = 0 otherwise.
For any regular vectors x = (xj) and y = (yj), we define a distance function

d(x,y) =
⊕

j

(
xjy

−1
j ⊕ x−1

j yj
)
= y−x⊕ x−y.

In the context of Rmax,+, this function coincides with the Chebyshev metric

d∞(x,y) = max
j

|xj − yj | = max
j

max(xj − yj , yj − xj).

In the case of the arbitrary idempotent semifield X, the distance function d
can be considered as a generalized metric that takes values in the interval [1,∞).

1.3. Tropical Puiseux Polynomials and Rational Functions
We consider a tropical Puiseux polynomial of n monomials in one variable x ∈ X,
which is written in the following form:

P (x) =
n⊕

j=1

θjx
pj , x ̸= 0,

where pj ∈ Q are exponents and θj ∈ X, θj ̸= 0, are coefficients for all j = 1, . . . , n.
We note that a polynomial defined in the context of the semifield Rmax,+

(max-plus algebra) is represented in terms of the usual operations as

P (x) = max
1≤j≤n

(pjx+ θj),

and therefore defines a piecewise-linear convex function on R.
Now consider a tropical rational function that is given by

R(x) =
P (x)

Q(x)
, P (x) =

n⊕

j=1

θjx
pj , Q(x) =

l⊕

k=1

σkx
qk , x ̸= 0.

When defined in terms of Rmax,+, the rational function can be written as

R(x) = P (x)−Q(x) = max
1≤j≤n

(pjx+ θj)− max
1≤k≤l

(qkx+ σk),

which is a difference of convex functions. We observe that any arbitrary continuous
function can be represented as the difference of two convex functions [14].
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1.4. Best Approximate Solution of Vector Equations
Given an (m× n)-matrix A and m-vector b, consider the problem to find regular
n-vectors x that solve the one-sided equation

Ax = b. (2)

Since the problem may have no solution, we concentrate on finding a best ap-
proximate solution to the equation in the sense of the metric d. The next statement
is a consequence of the results in [10] (see also [11]).

Theorem 1. Let A be a regular matrix, b a regular vector and ∆ = (A(b−A)−)−b.
Then the following statements hold:

1. The best approximate error for equation (2) is equal to
√
∆;

2. The best approximate solution of the equation is given by

x∗ =
√
∆(b−A)−;

3. If ∆ = 1, there are exact solutions; x∗ = (b−A)− is the maximum solution.

Suppose A and B are given (m× n)- and (m× l)-matrices. The problem is
to find regular x and y of order n and m to satisfy the two-sided equation

Ax = By. (3)

To obtain a best approximate solution to the equation, we apply the alter-
nating algorithm proposed in [12]. The algorithm implements the solution offered
by Theorem 1 to solve a series of one-sided equations obtained from (3) in which
the left and right sides are alternately replaced by constant vectors.

2. Discrete Best Approximation of Functions
We now describe an algebraic technique to solve the data-fitting problems of ap-
proximating an unknown function y = f(x) from finitely many samples (xi, yi) in
the tropical algebra setting. Both tropical polynomials and rational functions are
used as approximants. The problems are handled by transforming them into best
approximation of vector equations obtained from the sample data.

Suppose there are m samples (xi, yi) where xi and yi for i = 1, . . . ,m are
corresponding input and output of an unknown function f : X → X. Consider the
problem of approximating this function by polynomials of n monomials, given by

P (x) =
n⊕

j=1

θjx
pj ,

where we assume for all j = 1, . . . , n that pj ∈ Q are known exponents and
θj ∈ X are unknown coefficients. The problem consists in the determination of the
unknown coefficients that make the equations

P (xi) = yi i = 1, . . . ,m,

hold exactly or approximately by minimizing the deviation between both sides.
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With the matrix-vector notation

X =




xp1

1 . . . xpn

1
...

...
xp1
m . . . xpn

m


 , y =




y1,
...
ym


 , θ =




θ1
...
θn


 ,

we combine the scalar equations into the one-sided vector equation

Xθ = y,

where X and y are a known matrix and vector, and θ is an unknown vector.
We find a best approximate solution of the equation by applying Theorem 1

to obtain the squared error ∆∗ and vector θ∗ = (θ∗1 , . . . , θ
∗
n)

T of coefficients,

∆∗ = (X(y−X)−)−y, θ∗ =
√
∆∗(y

−X)−.

The best approximating polynomial is then given by

P∗(x) = θ∗1x
p1 ⊕ · · · ⊕ θ∗nx

pn .

Consider a rational function as an approximant, which is defined as

R(x) =
P (x)

Q(x)
, P (x) =

n⊕

j=1

θjx
pj , Q(x) =

l⊕

k=1

σkx
qk .

We assume pj , qk ∈ Q to be known exponents and θj , σk ∈ X unknown coef-
ficients for j = 1, . . . , n and k = 1, . . . , l. Given samples xi, yi ∈ X for i = 1, . . . ,m
from input and output of an unknown function, the problem is to find the coeffi-
cients that achieve the best approximation of the equations

R(xi) = yi, i = 1, . . . ,m.

To represent the problem in vector form, we introduce the notation

X =




xp1

1 . . . xpn

1
...

...
xp1
m . . . xpn

m


 , Y =




y1 0
. . .

0 ym


 ,

Z =




xq11 . . . xql1
...

...
xq1m . . . xqlm


 , θ =




θ1
...
θn


 , σ =




σ1
...
σl


 .

The scalar equations can be represented as the two-sided vector equation

Xθ = Y Zσ,

where X, Y and Z are known matrices, and θ and σ are unknown vectors.
We obtain a best approximate solution of the vector equation by using the

alternating algorithm proposed in [12]. The algorithm yields a minimum squared
error ∆∗ and related coefficients θ∗1 , . . . , θ∗n and σ∗

1 , . . . , σ
∗
l that define the function

R∗(x) =
θ∗1x

p1 ⊕ · · · ⊕ θ∗nx
pn

σ∗
1x

q1 ⊕ · · · ⊕ σ∗
l x

ql
.
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We note that in the real problems, the exponents in the approximating poly-
nomials P (x) and Q(x) may be unknown and thus need to be assessed along
with the coefficients of monomials. Below we use a Monte Carlo random sampling
technique to search for optimal values of exponents in the polynomials.

3. Numerical Examples
In this section, we offer examples in terms of the semifield Rmax,+ (max-plus alge-
bra), for which both tropical polynomials and rational functions can be represented
as piecewise linear functions. We assume the polynomials to have a fixed number
of monomials, while the exponents of these monomials are not given in advance.

We apply a two-level solution approach that combines direct random search to
fix exponents with the best approximation by the polynomials with fixed exponents
to evaluate the coefficients of monomials. To reduce the feasible set of exponents
in random search, we consider only polynomials with integer exponents.

We start with a function defined on the interval [0, 2] as follows:

f(x) = x2 − 3x1/3 + 5/2, 0 ≤ x ≤ 2.

The problem is to find an approximate tropical polynomial from a set of
m = 21 samples (xi, yi), where xi = (i−1)/10 and yi = f(xi) for i = 1, . . . ,m. We
consider polynomials with n = 7 monomials where the exponents are produced by
random sampling from the discrete uniform distribution over [−15, 5].

For each sample set of exponents, we evaluate the coefficients that attain the
minimum of the approximation error. After examining 10,000 sample sets of expo-
nents, we arrive at the minimum squared error ∆∗ = 0.0481 and the polynomial,
which in the conventional form is written as

P∗(x) = max(2.5240− 15x, 1.4096− 3x, 0.8736− x, 0.3503,

− 0.4760 + x,−1.6720 + 2x,−3.2853 + 3x).

A graphical illustration of the solution is given in Figure 1.
Now suppose that m = 21 samples (xi, yi) are given from the function

g(x) = 3(x− 1)2 sin(x) + 1/4, 0 ≤ x ≤ 2;

where xi = (i− 1)/10 and yi = g(xi) for i = 1, . . . ,m.
We approximate g(x) by a tropical rational function R(x) = P (x)/Q(x),

where P (x) and Q(x) are polynomials with n = 6 and l = 4 monomials.
After random sampling of 10,000 pairs of sets of exponent and evaluating

corresponding coefficients, we obtain a solution with ∆∗ = 0.0701. Figure 2 shows
the obtained approximating function R∗(x) = P∗(x)−Q∗(x), where

P∗(x) = max(6.9455− 3x, 6.0860− 2x, 4.9978− x, 3.7461,

0.7639 + 2x,−2.6361 + 4x),

Q∗(x) = max(6.6880− 5x, 6.2962− 3x, 5.8009− 2x, 2.4211).
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f(x) = x2 − 3x1/3 + 5/2
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Figure 1. Approximation of f(x) by a tropical polynomial P∗(x)
with n = 7 terms.
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Figure 2. Approximation of g(x) by a tropical rational function
R∗(x) with n = 6 and l = 4.
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On computer experiments with reversible differ-
ence schemes in Sage

Mikhail Malykh, Mark Gambaryan and Lubov’ Lapshenkova

Abstract. The results of computer experiments with reversible difference schemes
approximating differential equations with a quadratic right side are presented,
they made in the routine called fdm for sage. The generalization of the the-
ory of reversible difference schemes for dynamical systems with a polynomial
right part was discussed. It is proposed to use for this the quadratization of the
system of differential equations with polynomial part according to Appelroth.
The results of computer experiments with such schemes are presented.

1. Reversible schemes

Consider an autonomous system of differential equations

dx1
dt

= f1(x1, . . . , xn),
dxn
dt

= fn(x1, . . . , xn). (1)

Cremona transformations are a very interesting algebraic object. They were

discovered relatively recently, in the middle of the 19th century. After the first

successes in studying their properties, undertaken by Cremona, Netter, Rosanes

and Mlodsijewski, there was a long pause due to the unexpected breadth of the

question. Now this vastness is clear — any dynamical system with a quadratic

right-hand side is described using the Cremona transformation.

The algorithm for constructing a reversible scheme, presented at PCA’2021

and described in [1], is implemented in our fdm for sage system in the Sage com-

puter algebra system [2]. In this system, the initial problem is specified separately

from the method for solving it. Its solution, say, according to the explicit Eu-

ler scheme is specified as erk(pr), and according to the reversible scheme as

cremona_scheme(pr). Both functions return an element belonging to the Numsol

class, so you can work with the new scheme in this system in the same way as

with Runge-Kutta schemes. Of course, the externally obtained solutions using

these schemes differ significantly (see Fig. 1). Using this implementation, several
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computer experiments were carried out, during which very unexpected properties

of these schemes were found. Later, it turned out to be possible to substantiate

some of them.

1.0 1.5 2.0 2.5 3.0 3.5
x

1.0

1.5

2.0

2.5

3.0

3.5

y

FIGURE 1. Solution of the initial value problem for the Volterra–

Lotka system of equations: dots — the solution found by the

Runge–Kutta scheme, polygon — the solution found by the re-

versible scheme.

2. Quadratization of dynamical systems
Transferring the developed technique to the case of equations with a polynomial

right-hand side does not cause significant difficulties, since back at the beginning of

the 20th century G.G. Appelroth proposed a method that allows, by increasing the

number of unknowns, to reduce a system with a polynomial right-hand side to a

system with a quadratic right-hand side. This procedure was later called quadrati-

zation; Ref. [6] describes the software that allows performing such quadratization

of any system with a quadratic right-hand side. This makes it possible to con-

struct a reversible difference scheme for any dynamical system with a polynomial

right-hand side.

Computer experiments have shown that the relationships between new and

old variables, which are valid for the exact solution, are no longer valid for the

approximate solution, which is especially noticeable near moving singular points

of the solution. The appearance of moving algebraic singular points is typical for

nonlinear systems. In the case of poles, the solution found using a reversible scheme

passes through the pole without distortion and, after the pole, fits perfectly on the

96



On computer experiments with reversible difference schemes in Sage 3

integral curve [1]. However, in the case of an algebraic singular point, the situation

inevitably changes: there may not be a real integral curve behind the singular point.

However, the approximate solution continues beyond such singular points while

remaining real. In the future, we plan to combine software for squared differential

equations and our system for numerical integration of differential equations [2].

3. Properties of reversible circuits
Classical nonlinear oscillators integrable in elliptic functions, are dynamic systems

with quadratic right-hand side; a top fixed in its center of gravity is an example. In

this case, the new discrete theory completely repeats the continuous theory: i)the

points of the approximate solution lie on a certain elliptic curve, which at ∆t→ 0
transforms into an integral curve [3]; ii) the difference scheme allows a quadrature

representation [4]; iii) the approximate solution can be presented by means of an

elliptic function of discrete argument [4]. All the difference reduces to the fact

that the place of birational transformations on an integral curve is occupied by

the Cremona transformations of the entire three-dimensional space of velocities.

In the case of nonlinear oscillators nonintegrable in elliptic functions, e.g.,

in the case of the Volterra–Lotka system, the points are arranged along some

closed curve, which, however, is not algebraic. In contrast to the case of elliptic

oscillators, here it is impossible to choose the step ∆t such that the points of the

trajectory would form a periodic sequence. In particular, the polygon shown in

Fig. 1, actually changes with time, but very slowly.

FIGURE 2. Typical solution of the initial-value problem for an

asymmetric top.
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More complex conservative systems, e.g., the system describing the motion

of an asymmetric top, are also described by a system of the form (1) with the

quadratic right-hand side. Computer experiments show that the points of one

trajectory in this case fill everywhere densely some surfaces, see Fig. 2.

In the case of dissipative systems, the trajectory already cannot fill densely

the entire surface. However, here it is of interest that by choosing ∆t it turns out
to be possible to transform complex limit structures into multiple loops.

We believe that the development of methods for studying trajectories ob-

tained using reversible schemes will make it possible to look at non-integrable

systems from a new angle. The advantage of this point of view is that it is always

possible to calculate arbitrarily many solution points using a reversible scheme,

and therefore to see the structures into which the solution points are arranged in

phase space.
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Divergent Fourier series and summation in finite
terms using the A.N. Krylov method in CAS

Ksaverii Malyshev

Abstract. New procedures of the «Kryloff for Sage» software package, created
to accelerate the convergence of Fourier series, are presented. We implement
divergent Fourier series into our package, considered as generalized functions
from the space of distributions D′(−π, π). This not only expands the class
of series that can be studied using symbolic calculations, but also creates
the possibility of symbolically summing the Fourier series for which in the
previous version of the «Kryloff for Sage» package it was only possible to
speed up the convergence, without finding an expression in a closed form.

Introduction
This work is a continuation of previous ones aimed at creating programs for sym-
bolic analysis of Fourier series. We consider the formulation of the problem in
which the function represented by the Fourier series is not known, but must be
determined from its Fourier coefficients. Fourier coefficients are given in symbolic
form. This problem can be solved by standard series summation functions built
into modern computer algebra systems for a wide class of symbolic expressions
of Fourier coefficients. However, some difficulties arise along this path: when ap-
plied to Fourier series, CAS usually produce results in terms of complex-valued
higher transcendental functions [1]. At the same time, often the indicated Fourier
series represent piecewise polynomial and other piecewise elementary expressions.
Therefore, it is relevant to develop symbolic algorithms capable of finding finite
expressions for the sums of Fourier series precisely among real-valued piecewise
elementary functions.

In our previous report [2], we talked about A.N. Krylov accelerating the
convergence of some special Fourier series, the coefficients of which are rational
functions of the harmonic number. For them, a simple version of the A.N. Krylov
method was implemented in the CAS Sage [3] in the form of several functions
of the «Kryloff for Sage» software package. In that version of the program the
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acceleration of convergence led to a closed-form expression for a very narrow, but
not empty class of Fourier series. In the proposed work, we complement these
considerations with new functions that can solve some of the summation problems
that were previously beyond our capabilities.

We consider Fourier series as elements of the space of distributions D′(−π, π)
[4]. This is correct provided there is no more than a power-law increase in Fourier
coefficients [5]. Then the series under consideration can be differentiated term by
term any number of times: if a series diverging in the classical sense arises, then we
treat it as an element of the space D′(−π, π) in which this series is convergent. By
differentiating the Fourier series term by term, one can try to look for a differential
equation of which it may be a solution, cf. [6, p.224-226, 235], cf. [7] and references
therein. On this path, it is possible to formulate several simbolic procedures that
allow one to reconstruct, using the Fourier series, an inhomogeneous boundary
value problem that it satisfies as an element of the space D′(−π, π). The inho-
mogeneity of the differential equation will be an element of the space D′(−π, π).
To obtain an expression for the sum, it is necessary to solve this boundary value
problem. The Fourier series is represented as a convolution of distributions. In
some cases, this approach makes it possible to obtain the desired expressions for
the sums of Fourier series in the form of elementary real-valued functions.

The report will present the implementation of the outlined strategy using
CAS Sage, and experiments on it in computer algebra systems WolframAlpha [8]
and Maple [9].

The author is grateful to M.D. Malykh, L.A. Sevastyanov and M.V. Alekseev
for valuable discussions.

This work is supported by the Russian Science Foundation (grant no. 20-11-
20257).
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The rotation number
integer quantization effect
in groups acting on the circle

Andrei Malyutin

Abstract. V.M. Buchstaber, O.V. Karpov, and S.I. Tertychnyi initiated the
study of the rotation number integer quantization effect for a class of dy-
namical systems on a torus that includes dynamical systems modeling the
dynamics of the Josephson junction. Based on this approach, we study the
rotation number integer quantization effect in Artin braid groups and other
finitely generated groups acting on the circle. In this case, we find the follow-
ing manifestation of the quantization effect. Assume that a finitely generated
group G acts proximally on the circle by orientation-preserving homeomor-
phisms. Then for almost every path of any non-degenerate random walk on G,
the proportion of elements with integer rotation number in the initial section
of the path tends to 1 as the length of the section approaches infinity.

Introduction
We will discuss a new counterintuitive effect for groups acting on the circle. In
order to describe this effect, we introduce a series of definitions.

We begin with the concepts of translation and rotation numbers introduced
by Henri Poincaré [24]. Let R be the real line, Z be the set of integers, and S1

be the circle R/Z. The quotient map π : R→ S1 is the universal covering map. If
f : S1 → S1 is an orientation-preserving autohomeomorphism, F : R→ R is a lift
of f to R (that is, π ◦ F = f ◦ π), and x is a point in R, then the sequence

F (x)− x
1

,
F 2(x)− x

2
,

F 3(x)− x
3

, . . .

converges. The limit

τ(F ) = lim
k→∞

F k(x)− x
k

= lim
k→∞

F k(x)

k
(1)
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does not depend on x and is called the Poincaré translation number of F . The
value

ρ(f) = τ(F ) mod Z
is independent of the choice of F and is called the Poincaré rotation number of f .
The translation and rotation numbers are naturally defined for circle isotopies,
torus foliations, etc. It is often the case that the term “rotation number” is used
to refer to the translation number as well.

Another concept we use is that of proximal group actions. An action of a
group G on a space X is said to be proximal if, for any two points x and y in X,
there exists a sequence {gk} in G such that the sequences {gk(x)} and {gk(y)}
converge to one and the same point.

Theorem 1. Assume that a finitely generated group G acts proximally on the
circle by orientation-preserving homeomorphisms. Then for almost every path of
any non-degenerate random walk on G, the proportion of elements with integer
rotation number in the initial section of the path tends to 1 as the length of the
section approaches infinity.
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The software GInv for calculating involutive bases

of polynomial ideals

Yu.A Blinkov, S.I. Salpagarov and A.A. Mamonov

Abstract. A new version of the softwarefor �nding the involutive ideals of
polynomial and di�erential ideals is presented, it called GInv. A brief de-
scription of the improvements is given and the results of its testing on real
problems are presented, including the problem about the nodes and weights
of cubature formulas on the sphere.

Introduction

The study of problems in mechanics and mathematical physics is often reduced to
solving systems of polynomial equations. However, as rightly noted by the authors
of Numerical recipes [1], this problem does not admit a universal numerical solu-
tion method in the cases of two and more unknowns. Fortunately, in the 1990s, an
implementation of the Buchberger's algorithm for �nding Gröbner bases of ideals
of polynomial rings appeared in computer algebra systems (SKA). Finding the
Gröbner basis in the lexicographic order of monomes allows us to reduce the so-
lution of a system of nonlinear equations with a �nite number of solutions to the
solution of one equation with one unknown [2]. Although the Buchberger's algo-
rithm allows to �nd the Gröbner basis in a �nite number of steps, in practice on
a modern computer it can be used to solve systems of a small degree and with no
more than a dozen unknowns. Several improvements to this algorithm were pro-
posed in the 1990s, some of which remain commercial. At the same time, Gerdt,
Zharkov and Blinkov [3] proposed a new approach to �nding the bases of polyno-
mial ideals based on the original concept of involutive division. In the 2000s, this
algorithm was implemented in the form of GInv software and applied to the study
of a number of problems in mathematical physics [4]. Recently, this software has
been completely redesigned and transferred to the public domain [5].
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1. New version

The new version of GInv is written as a library in C++11. For dynamic data struc-
tures such as lists, red-black and binary trees, GMP libraries are used. This al-
lows to complete calculations with arbitrary precision integers and object-oriented
memory redistribution. The package interface is designed as an additional module,
written in Python3 language. Attention was paid to optimizing the use of mem-
ory and processor cache. At the same time, the well-known disadvantages of the
standard malloc/free and the garbage collection approach were taken into account.
The original approach turned out to be easy to implement compared to standard
malloc/free and convenient when searching for errors related to memory leaks.

Improving the methods of calculating the Gröbner basis has two goals: speed-
ing up calculations and reducing the resources used in calculations. These goals
are not always possible to combine. From general considerations, it is obvious that
very frequent garbage collection can slow down calculations, and on the contrary,
the willingness to provide the system with an unlimited number of clean memory
pages can lead to a very rapid exhaustion of resources. Moreover, it is not always
clear whether a particular change will lead to an actual improvement, that is, the
achievement of one of these goals. Therefore, it is extremely important to con-
duct systematic testing at every stage of the development of such systems. The
new version of GInv was tested on a real problem � the problem of calculating
nodes and weights of cubature formulas on a sphere cite [6]. This problem leads
to a very complex system of nonlinear equations, which previously could only be
solved numerically. The economical attitude to memory made it possible to solve
it analytically.

2. Testing

A special software tool has been developed that allows to test various versions of
GInv and similar computer algebra systems in automatic mode and get the results
in graphical form. To proceed with testing a fairly large and representative set of
135 equations was assembled. This test database was updated to use JSON format,
suitable for use in various computer algebra systems (GInv, SymPy, Sage).

This article will describe this tool and present the results of testing the current
version of GInv. The source �les of the testing are publicly available and available
for download in a separate GitHub repository at [7].

The system was tested on a server platform consisting of two 4-core Intel
Xeon L5630 processors. Each processor had 4 computing cores with support for
Hyper-Threading technology, which allowed running 2 threads on each physical
core. Thus, the total number of logical cores (processing threads) was 8. The base
clock frequency of each processor core was 2134 MHz. Some results of this testing
are displayed on following table 1. Full terults available at [7].
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Test Dimension Length of the Basis Reduction Time
ilias13 7 1 0 0,53

comb3000 10 35 503 11,70
hcyclic6 7 221 18634 308,41
eco9 9 189 159992 4322,05

hcyclic7 8 1182 542213 56018,99
Table 1. Sample of test results

Conclusion

A new version of software GInv was developed and tested. This new version and
dataset for testing are now publicly available on open sources. The new version
allowed to solve some problems analytically, which were previously solvable only
numerically.
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Computing of tropical sequences associated with
Somos sequences in Gfan package

Farid Mikhailov

Abstract. The main objective of this work is to study tropical recurrent se-
quences associated with Somos sequences. For a set of tropical recurrent se-
quences, D. Grigoriev put forward a hypothesis of stabilization of the maxi-
mum dimensions of solutions to systems of tropical equations given by poly-
nomials, which depend on the length of the sequence under consideration. The
validity of such a hypothesis would make it possible to calculate the dimen-
sions of these solutions for systems of arbitrary length. The main purpose of
this work is to compute tropical sequences associated with Somos sequences
using the Gfan package and to test the Grigoriev hypothesis.

Introduction
Tropical mathematics is a young area of modern mathematics related to the study
of semirings with idempotent addition. Despite its novelty, it has already found its
application in algebra, geometry, mathematical physics, biology, economics, neural
network theory, dynamic programming, and other areas.

This work is a continuation of the work [1], which was devoted to tropical
linear recurrent sequences. As part of this work, tropical sequences associated with
Somos sequences are computed in the Gfan package.

Gfan is a software package for computing universal Gröbner bases, some
related geometric objects (Gröbner fans) and tropical varieties, developed in 2005
by A. Jensen, based on the algorithms described and developed in his dissertation
[2].

1. Formulation of the problem
One of the main objects of tropical mathematics is the tropical semiring (R ∪
{−∞},⊕,⊗), where x⊕y := max{x, y} , x⊗y := x+y. Tropical mathematics has
its analogues of polynomial algebra, linear algebra and other areas of mathematics
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[3]. Taking the minimum can be considered as tropical addition, then the additional
element to the set of real numbers will be plus infinity.

Let k ≥ 2 be a natural number and

α = {αi|1 ≤ i ≤ [k/2]}, x = {xj | − k/2 < j ≤ [k/2]}
- two sets of independent formal variables in the amount of [k/2] in the first

case and k in the second. The sequence of rational functions Somos-k of variables
from α and x, Sk(n) = Sk(n;α;x)(n ∈ Z), is defined by the recursive relation

Sk

(
n+

[
k + 1

2

])
Sk

(
n−

[
k

2

])
=

∑

1≤i≤k/2

αiSk

(
n+

[
k + 1

2

]
− i

)
Sk

(
n−

[
k

2

]
+ i

)
.

In this work, we study the tropical sequences pk(n) associated with Sk(n)
that satisfy the recurrent relation

pk

(
n+

[
k + 1

2

])
+pk

(
n−

[
k

2

])
= min

1≤i≤k/2

{
pk

(
n+

[
k + 1

2

]
− i

)
+ pk

(
n−

[
k

2

]
+ i

)}
.

An interesting fact is that the tropical analogue of such sequences is related
to the classical Somos sequences by some relation. It was proved in [4] that Sk(n)
is a Laurent polynomial in the initial variables xj and an ordinary polynomial in
αi. Therefore, it can be written as

Sk(n) =


 ∏

−k/2<j≤[k/2]

x
p
(j)
k (n)

j


Pk(n),

where Pk(n) = Pk(n;α;x) are polynomials with integer coefficients and p(j)k (n) are
integer sequences.

In this work, we will consider all solutions of the finite sequences pk(n) with
0 ≤ n ≤ s for k = 4 and k = 5.

2. Computations of Somos-4 sequences in the Gfan package
To compute the sequences p4(n), we consider the sequences

q4(n) = ∆2p4(n) = ∆p4(n+ 1)−∆p4(n) = p4(n+ 2)− 2p4(n+ 1) + p4(n).

Then the tropical relations will look like

q4(n− 1) + q4(n) + q4(n+ 1) + max{0, q4(n)} = 0

For computation in the Gfan package, we reduce this relation to a tropical
polynomial. Let yn = q4(n). Then we get

max{yn−1+yn+yn+1, yn−1+2yn+yn+1} = yn−1⊗yn⊗yn+1⊕yn−1⊗y⊗2
n ⊗yn+1

To find solutions to this relation, we find tropical prevarieties. Since tropical
prevarieties are the set of nonsmoothness of a tropical polynomial, the difficulty
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for this is that this polynomial is equal to zero. To solve this problem, add 0 as a
term to the tropical polynomial

yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−1 ⊗ y⊗2
n ⊗ yn+1 ⊕ 0.

We can notice that the system of tropical polynomials max{yn−1 + yn +
yn+1, yn−1 + 2yn + yn+1} for 1 ≤ n ≤ s− 1 reaches a maximum greater than zero
only in two cases: y0 > 0 and ys > 0. Because of this, the addition of the term 0
does not affect the dimension of the tropical prevariety. Therefore, to compute the
dimensions of the solution space, these cases were excluded. This idea was verified
experimentally in the Gfan package for computed finite sequences.

Tropical prevarieties can be computed using the function gfan_tropicalintersection
of the Gfan package [5]. Denote the dimension of the solution space by ds. The
obtained dimensions of the solution space are presented in Table. 1. The obtained
solutions correspond to the calculations carried out in [6].

Table 1. Dimensions of the Somos-4 solution space

s 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ds 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6

3. Computations of Somos-5 sequences in the Gfan package
The tropical relations in this case look like

q5(n− 2) + q5(n− 1) + q5(n) + q4(n+ 1) + max{0, q5(n− 1) + q5(n)} = 0.

Let yn = q5(n). Then we get

max{yn−2 + yn−1 + yn + yn+1, yn−2 + 2yn−1 + 2yn + yn+1} = 0.

Then we consider tropical prevarieties for the following polynomial

yn−2 ⊗ yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−2 ⊗ y⊗2
n−1 ⊗ y⊗2

n ⊗ yn+1 ⊕ 0.

We can notice that the system of tropical polynomials max{yn−2 + yn−1 +
yn + yn+1, yn−2 + 2yn−1 + 2yn + yn+1} for 2 ≤ n ≤ s − 1 reaches a maximum
greater than zero only in three linear cases: y0 > 0, ys > 0 and yn = (−1)n.
Because of this, the addition of the term 0 does not affect the dimension of the
tropical prevariety. Therefore, to compute the dimensions of the solution space,
these cases were excluded.

The obtained dimensions of the solution space are presented in Table. 2.

Table 2. Dimensions of the Somos-5 solution space

s 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
ds 3 3 3 4 4 4 4 4 5 5 6 6 6 6 6 7 7 8
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Conclusion
Based on the computed tropical prevarieties, we can make the assumption that for
Somos-4 sequences ds =

[
s−2
4

]
+2. Then for such sequences the tropical entropy [1]

takes the value H = 1/4. For systems of tropical polynomials yn−1 ⊗ yn ⊗ yn+1 ⊕
yn−1 ⊗ y⊗2

n ⊗ yn+1 for 1 ≤ n ≤ s− 1 without addition 0, it is obtained that ds = 2
for any s. Then for such sequences the tropical entropy takes the value H = 0.

Based on the computed tropical prevarieties, we can make the assumption
that for Somos-5 the tropical entropy takes the value H = 2/7. For systems of
tropical polynomials yn−2 ⊗ yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−2 ⊗ y⊗2

n−1 ⊗ y⊗2
n ⊗ yn+1 for

2 ≤ n ≤ s − 1 without addition 0, it is obtained that ds = 3 for any s. Then for
such sequences the tropical entropy takes the value H = 0.

For the Somos-6 and Somos-7 cases, it is more difficult to find the dimension
of the solution space using the computation of tropical prevarieties. The problem
is that before adding zero as a tropical monomial to tropical polynomials, the
solution space of finite sequences increases.

The results obtained are consistent with Grigoriev’s hypotises on the stabi-
lization of the maximum dimensions of solutions to systems of tropical sequences.
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Murnaghan-Nakayama rule for complete flag vari-
ety

Gleb Nenashev

Abstract. Schubert polynomials were introduced by A. Lascoux and M. P. Schützenberg
to describe the cohomology ring of complete flag varieties. The famous Schur
functions are special cases of Schubert polynomials. In this work we study
generalization of Murnaghan-Nakayama rule for Schubert polynomials. We
found a symmetric formula for this rule using the Fomin-Kirillov algebra.

Introduction

The cohomology ring of the complete flag variety H∗(Fℓn) admits a special linear
basis {σw} indexed by permutations on n elements. The elements of the basis are
called Schubert classes. For any u, v ∈ Sn, we have

σuσv =


w∈Sn

cwu,vσw

for some cwu,v ∈ R, u, v, w ∈ Sn. The numbers cwu,v are called the structure con-
stants for H∗(Fℓn). By algebro-geometric reasons, the structure constants are
always non-negative integers. To provide a combinatorial interpretation for these
structure constants is a long standing open problem in algebraic combinatorics.
The constants are generalizations of famous Littlewood-Richardson coefficients
([9]), which correspond to the case when both permutations are Grassmannian of
the same descent.

Study of cohomology rings of flag varieties started long ago and the first multi-
plication rule was constructed by D. Monk [12] in 1959. I. N. Bernstein, I. M. Gelfand,
S. I. Gelfand [1] and M. Demazure [3] gave a description of the cohomology ring of
the complete flag variety Fℓn in 70th. Later in 1982 A. Lascoux and M. P. Schützenberg [7,
8] defined Schubert polynomials recursively using divided differences operators. For
the polynomial ring Q[x1, x2, x3, . . .], the i-th divided differences operator is given
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by

∂if :=
f − sif

xi − xi+1
.

It is easy to see that these operators send polynomials to polynomials, furthermore,
if f has integer coefficients, then ∂if also has integer coefficients.

Definition 1 (c.f. [7, 8]). For a permutation w0 = (n, n−1, . . . , 1) ∈ Sn, its Schubert
polynomial is given by

Sw0 = xn−1
1 xn−2

2 · · ·x1
n−1 ∈ Q[x1, x2, . . .].

For a permutation w ∈ Sn s.t. w ∕= w0,

Sw = ∂iSwsi for i such that ℓ(wsi) = ℓ(w) + 1.

These polynomials are well defined and the definition above agrees with the
following inclusion S1 ⊂ S2 ⊂ S3 ⊂ . . . ⊂ SN.

Theorem 1 (c.f. [7, 8]). For any u ∈ SN, its Schubert polynomial Su is well defined
and Su is a homogeneous polynomial of degree ℓ(u).

The set {Su, u ∈ SN} of all Schubert Polynomials is a linear basis of Q[x1, x2, x3, . . .].

The closed formula for each Schubert polynomials in terms of the reduced
decompositions was given by S. Billey, W. Jockusch, and R. Stanley [2] and using
rc-graphs by S. Fomin and A. N. Kirillov [4], see also [6]. Schubert polynomials are
generalizations of famous Schur functions, see the book [10].

Since {Su, u ∈ SN} is a linear basis of Q[x1, x2, x3, . . .], we have unique
coefficients cwu,v, u, v, w ∈ SN such that, for any u, v ∈ SN,

SuSv =


w∈SN

cwu,vSw.

These coefficients cwu,v, u, v, w ∈ SN are exactly the structure constants for flag
varieties.

The following rule was proven for the original problem.

Theorem 2 (Monk’s rule, c.f. [12]). For u ∈ SN and k ∈ N, we have

SuSsk = Su · (x1 + x2 + . . .+ xk) =


a≤k<b: ℓ(uta,b)=ℓ(u)+1

Suta,b
,

where ta,b is a transposition of a and b.

Later Pieri’s rule and a more general rule for rim hooks were given by
F. Sottile in 1996 [14]. K. Mészáros, G. Panova, and A. Postnikov in 2014 [11]
rewrote and gave a new prove of the rule for rim hooks (and proved that this
way works for hooks with extra square) in terms of Fomin-Kirillov algebra [5]. We
will define Fomin-Kirillov algebra and formulate Pieri’s rule in the next section.
There are also some other rules, but unfortunately they have restrictions on both
permutations. A. Morrison and F. Sottile found the Murnaghan-Nakayama rule for
Schubert polynomials, see [13] and below we develop Murnaghan-Nakayama rule
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in Fomin-Kirillow algebra. Our formula has extra symmetries unlike Morrison-
Sottile’s rule and it is better in sense of Bruhat orders, see Proposition 2.

1. Fomin-Kirillov algebra
Denote by FKN the algebra with generators [i, j], where i ∕= j ∈ N and relations

• [i, j] = −[j, i];
• [i, j]2 = 0;
• [i, j][k, ℓ] = [k, ℓ][i, j] for distinct i, j, k, ℓ;
• [i, j][j, k] + [j, k][k, i] + [k, i][i, j] = 0.

The last equation is know as associate Yang-Baxter equation. The classical
FKn is generated only by [i, j], i, j ∈ [n]. The Fomin-Kirillov algebra acts on
Schubert polynomials (on the cohomology ring) as the following one side operators

Sw[a, b] =






Swta,b
if ℓ(wta,b) = ℓ(w) + 1 and a < b,

−Swta,b
if ℓ(wta,b) = ℓ(w) + 1 and a > b,

0 otherwise.

We define Dunkl elements in FKN as

θk = −


i<k

[i, k] +


j>k

[k, j] =


i

[k, i].

Dunkl elements are commute pairwise, i.e., θiθk = θkθi, see [5]. As corollary of
Monk’s rule we get

Proposition 1 (c.f. [5]). For any permutation u ∈ Sn and k ∈ N, we have

Suxk = Suθk.

Theorem 3 (Pieri’s rule [11]). For u ∈ SN and k,m ∈ N, we have

Su · hk(x1, x2, . . . , xm) = Su ·






i1≤i2≤...≤ik≤m

xi1xi2 · · ·xik



 =

=


a1≤...≤ak≤m
m<b1,...,bk are distinct

Su[a1b1][a2b2] · · · [akbk]

and

Su · ek(x1, x2, . . . , xm) = Su ·






i1<i2<...<ik≤m

xi1xi2 · · ·xik



 =

=


a1,...,ak≤m are distinct
m<b1≤...≤bk

Su[a1b1][a2b2] · · · [akbk].

In this paper we extend this approach and present the formula for Murnaghan-
Nakayama rule in Fomin-Kirillov algebra.
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Theorem 4 (Murnaghan–Nakayama rule). For u ∈ SN and k,m ∈ N, we have

Su·pk(x1, x2, . . . , xm) = Su · (xk
1 + xk

2 + . . .+ xk
m) =

=


P is a Dyck path of length 2k

(−1)ue(P )


a1,...,aue(P )+1≤m
b1,...,bk−ue(P )>m

are distinct

SuMP (a, b).

The first summation is overall Dyck paths and the second summation is overall
distinct indexes a1, . . . , aue(P )+1 ≤ m < b1, . . . , bk−ue(P ) corresponding to moves
up on even and odd places resp. and MP (a, b) is a product of [ai, bj ] as in the
picture.

It is clear that our rule is symmetric on indexes [m] and on indexes {m +
1,m+2,m+3, . . .}, which should help in a construction of such a rule for the case
of Schubert polynomials times Schur functions. Our rule is impossible to simplify,
see Proposition 2.

Proposition 2. For u, v ∈ SN and k,m ∈ N, there is at most one Dyck path with
indexes a1, . . . , aue(P )+1 ≤ m < b1, . . . , bk−ue(P ) such that SuMP (a, b) = Sv.

In particular, Supk(x1, x2, . . . , xm) =


±Sv, where summation by some
permutations.
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Combinatorial Ky Fan theorem for sphere bundles

Gaiane Panina

(By a joint work with Rade Zivaljevic)

Combinatorial statements, such as theorems of Carathéodory, Radon, Helly,
Sperner, Tucker, Ky Fan, etc., are fundamental results of combinatorial (alge-
braic) topology, accessible to non-specialists, which are immediately applicable to
mathematical economics, data science, game theory, graph theory, mathematical
optimization, computational geometry, and other �elds.

The Ky Fan theorem is also a disguised combinatorial counterpart of the
Borsuk-Ulam theorem. Recall its usual set-up: the standard unit sphere Sn ⊂ Rn+1

is triangulated and the triangulation is assumed to be centrally symmetric. There
is a labeling (coloring) of vertices of this triangulation

λ : V ert(Sn) → {±1, ..., ±N}
which is

• antipodal, λ(−v) = −λ(v) ∀v ∈ V ert(Sn), and
• λ(v) ̸= −λ(w) for each pair {v, w} of adjacent vertices of the triangulation.

The alternating number Alt(σ) of a simplex is the number of sign changes in
the labels of its vertices (which are ordered by the absolute values). For example
Alt(−1, 2, 3, −4) = 2; Alt(−1, 2, −3, 4) = 3, etc.

Clearly, the alternating numbers of a simplex and its antipodal one are equal.
The maximal possible alternating number is n, and these simplices come in pairs.
The Ky Fan theorem states that n < N , and the number of (pairs of) simplices
with alternating number n is odd.

We shall address the following questions:
When is it possible to replace the triangulated sphere by some other triangu-

lated manifold with a free Z2-action? What happens if one replaces a unique sphere

Sn by a parameterized continuous family of spheres, that is, by the total space of

some spherical bundle over a smooth manifold?
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2 Gaiane Panina

Our main results are:

• For a spherical bundle, there are �many� simplices with alternating number
n; taken together, they form a closed pseudomanifold which is topologically
as complicated as the base of the bundle.

• For non-trivial bundles one expects simplices with alternating numbers big-
ger than n. How much bigger depends on the Stiefel-Whitney classes of the
bundle.

• Some explicit examples will be provided. They include spherical bundles asso-
ciated to the tangent bundles of selected real and complex projective spaces.

Gaiane Panina

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy

of Sciences

Russia

e-mail: gaiane-panina@rambler.ru
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Exact solutions to systems of second order ordi-

nary di�erential equations by Decomposion method

Parasidis I.N., Oinarov R. and Providas E.

Abstract. The solvability conditions and exact solutions to the system of
linear second order di�erential equations in terms of the abstract operator
equations

BX(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t) = F (t),

with nonlocal multipoint and integral boundary conditions

M0X(0)+

n∑

i=1

MiΨi(X) = 0⃗, N0X
′(0)+CX(0)+

n∑

i=1

[NiX
′(ti)+ViX(ti)] = 0⃗,

by decomposition method is proposed in this paper, where C,M0, N0,Mi, Ni, Vi

are matrices, Ψi(X) Fredholm integrals. In the case where the fundamental
solution of the �rst order system is known, the fundamental solution of the
corresponding second order system was obtained. The technique is easy to
implement to any Computer Algebra System (CAS) and is economic and
e�cient compared to other existing methods.

Introduction

Everewhere below we denote by X the space C[0, 1] or Lp(0, 1) and by Xm the
space of column vectors X(t) = col(x1(t), .., xm(t)) with elements from X , i.e.
Xm = Cm[0, 1] or Xm = Lpm

(0, 1). Denote also by X i the space Ci[0, 1] or the
Sobolev space W i

p(0, 1), and by X i
m the space Ci

m[0, 1] or W i
pm

(0, 1), i = 1, 2. We

will also denote by 0m the zero and by Im the identity m×m matrices. By 0⃗
we will denote the zero column vector.

Lemma 1. Let P (t), T (t) bem×m matrices with element from X , the operators
A1, A2 : Xm → Xm be de�ned by

A1Y (t) = Y ′(t)− P (t)Y (t), Y (t) ∈ D(A1) = X 1
m, (1)

A2X(t) = X ′(t)− T (t)X(t), X(t) ∈ D(A2) = X 1
m, (2)
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and Z,Z the fundamental matrices to the homogeneous equations A1Y (t) = 0⃗, A2X(t) =

0⃗, respectively, such that Z(0) = Im,detZ ̸= 0. Then the operators Â1, Â2 corre-
sponding to the problems

Â1Y (t) = A1Y (t) = F (t), D(Â1) = {Y (t) ∈ D(A1) : Y (0) = 0⃗}, (3)

Â2X(t) = A2X(t) = Y (t), D(Â2) = {X(t) ∈ D(A2) : X(0) = 0⃗}, (4)

are correct and their unique solutions are given by

Y (t) = Â−1
1 F (t) = Z(t)

∫ t

0

Z−1(s)F (s)ds, (5)

X(t) = Â−1
2 Y (t) = Z(t)

∫ t

0

Z−1(s)Y (s)ds. (6)

Theorem 1. Let the operators A1, A2, Â1, Â2, vectors X,Y, F and matrices
Z,Z be de�ned as in Lemma 1, the vectors Ψ = col(Ψ1, ...,Ψn) ∈ X ∗

n , and Y (⃗t) =
col(Y (t1), ..., Y (tk)), 0 < t1 < ... < tk ≤ 1, M = (M1, ...,Mn) and N =
(N1, ..., Nk) be a m × (mn) and m × (mk) constant matrices, respectively, and
Mi, Nj the m×m constant matrices, i = 0, 1, ..., n, j = 0, 1, ..., k. Then:
(i) The operator B1 : Xm → Xm, corresponding to the problem

B1Y (t) = A1Y (t) = Y ′(t)− P (t)Y (t) = F (t), (7)

D(B1) = {Y (t) ∈ D(A1) = X 1
m : N0Y (0) +

k∑

j=1

NjY (tj) = 0⃗}

is injective if and only if

detL1 = det[N0 +
k∑

j=1

NjZ(tj)] ̸= 0. (8)

(ii) If the operator B1 is injective, then it is correct and a unique solution to
Problem (7) is

Y (t) = B−1
1 F (t) = Â−1

1 F (t)− Z(t)L−1
1

k∑

j=1

Nj(Â
−1
1 F )(tj), (9)

where Â−1
1 F (t) is given by (5).

(iii) The operator B2 : Xm → Xm, corresponding to the problem

B2X(t) = A2X(t) = X ′(t)− T (t)X(t) = Y (t), (10)

D(B2) = {X(t) ∈ D(A2) = X 1
m :M0X(0) +

n∑

i=1

MiΨi(X) = 0⃗}

is injective if and only if

detL2 = det[M0Z(0) +MΨ(Z)] ̸= 0. (11)
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(iv) If the operator B2 is injective, then it is correct and a unique solution to
Problem (10) is

X(t) = B−1
2 Y (t) = Â−1

2 Y (t)−Z(t)L−1
2 MΨ(Â−1

2 Y ), (12)

where Â−1
2 Y (t) is given by (6).

Theorem 2. Let a vector Ψ be de�ned as in Theorem 1, vectors U = U(t) =
col (u1(t), ..., u2m(t)) ∈ X 1

2m, F = F(t) = col (f1(t), ..., f2m(t)) ∈ X2m, M0 and
M be the 2m × 2m and 2m × 2mn constant matrices, respectively, S,Q constant
m×m matrices, detQ ̸= 0 and the operator B be de�ned by

BU(t) = AU(t) = U ′(t)−DU(t) = F , (13)

D(B) = {U(t) ∈ D(A) = X 1
2m : M0U(0) +MΨ(U) = 0⃗},

where D =

(
S Q
Im 0m

)
. Suppose also that there exist a constant matrix T

satisfying the matrix equation T 2 − ST = Q, detT ̸= 0 and the fundamental
matrices Z = Z(t),Z = Z(t) to the systems Y ′(t) − PY (t) = 0⃗, A2X(t) =

X ′(t) − TX(t) = 0⃗, respectively, where P = S − T, Z(0) = Im, detZ(0) ̸= 0.
Then:
(i) The 2m× 2m matrix

Z(t) =

(
Z(t) Â−1

2 Z(t)∫ t

0
Z(s)ds+ T−1Z(0)

∫ t

0
Â−1

2 Z(s)ds− (PT )−1

)
(14)

is a fundamental matrix to U ′(t) −DU(t) = 0⃗, where S = P + T, Q = −PT, Â2

as in Lemma 1.
(ii) Problem (13) is uniquely solvable if and only if

detL = det[M0Z(0) +MΨ(Z)] ̸= 0, (15)

and the unique solution to Problem (13) is given by

U(t) = Â−1F(t)− ZL−1MΨ
(
Â−1F(t)

)
, (16)

where Â−1F(t) = Z(t)
∫ t

0
Z−1(s)F(s)ds, Z(0) =

(
Z(0) 0m

T−1Z(0) −(PT )−1

)
.

Theorem 3. Let the operator A, the matrices S(t), Q(t),M0,M = (M1, ...,Mn),
the vectors X,F,Ψ be de�ned as in Theorem 1 and N = (N1, ..., Nn), V = (V1, ..., Vn)
be the m ×mn matrices with m ×m constant matrices Ni, Vi. Suppose also that
N0, C arem×m constant matrices, the vectors X (⃗t) = col(X(t1), ..., X(tn)), X

′(⃗t) =
col(X ′(t1), ..., X ′(tn)), where 0 < t1 < ... < tn ≤ 1, and the operator B : Xm → Xm
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is de�ned by

BX(t) = AX(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t) = F (t), (17)

D(B) = {X(t) ∈ D(A) = X 2
m :M0X(0) +

n∑

i=1

MiΨi(X) = 0⃗,

N0X
′(0) + CX(0) +

n∑

i=1

[NiX
′(ti) + ViX(ti)] = 0⃗}.

If there exists a di�erentiable m×m matrix T = T (t), such that

T ′(t)−S(t)T (t) + T 2(t) = Q(t), C = −N0T (0), Vi = −NiT (ti), i = 1, ..., n, (18)

then there exist the matrix P (t) = S(t) − T (t) and the operators A1, A2, Â1, Â2

de�ned by (1), (2), (3), (4), respectively, such that:
(i) The operator B is decomposed in B = B1B2, where the operators B1, B2 :
Xm → Xm are given by

B1Y (t) = A1Y (t) = Y ′(t)− P (t)Y (t) = F (t), (19)

D(B1) = {Y (t) ∈ D(A1) : N0Y (0) +
∑n

i=1NiY (ti) = 0⃗},
B2X(t) = A2X(t) = X ′(t)− T (t)X(t) = Y (t), (20)

D(B2) = {X(t) ∈ D(A2) :M0X(0) +
∑n

i=1MiΨi(X) = 0⃗}.
(ii) The operator B is injective if and only if

detL1 = det[N0 +

n∑

i=1

NiZ(ti)] ̸= 0, detL2 = det[M0Z(0) +MΨ(Z)] ̸= 0, (21)

where Z,Z are the fundamental matrices of the equations A1Y (t) = 0⃗,

A2X(t) = 0⃗, respectively.
(iii) If the operator B is injective, then it is correct and a unique solution to
Problem (17) is given by

X(t) = B−1F (t) = Â−1
2 Y (t)−Z(t)L−1

2 MΨ(Â−1
2 Y ), where (22)

Y (t) = Â−1
1 F (t)− Z(t)L−1

1

∑n
i=1Ni(Â

−1
1 F )(ti), (23)

and Â−1
1 F (t), Â−1

2 Y (t) are given by (5), (6), respectively.

Conclusion

The solvability conditions and exact solutions to the nonlocal boundary value
problems (BVPs) for the systems of �rst and second order ordinary di�erential
equations were obtained in the terms of abstract operators. BVP for the system of
second order were solved by Decomposition method. Some examples in [1], [2], [3]
can be solved more easily by the proposed method for the systems of �rst order.
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Polynomial method for point configurations
Fedor Petrov

Abstract. A celebrated theorem due to Bannai–Bannai–Stanton says that
if A is a set of points in Rd, which determines two distinct distances, then

|A| ⩽
(

d + s

s

)
.

I want to discuss a short proof of this result which combines Sylvesters Law
of Inertia for quadratic forms with the proof of the so-called Croot–Lev–Pach
Lemma [1] from additive combinatorics. Based on a joint work [2] with C.
Pohoata.
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Algorithmic mathematics in a technical university:
different ways to comprehend the material

Egor Malyutin and Sergei Pozdniakov

Abstract. The problem of a student’s comprehension of mathematical con-
cepts is becoming increasingly relevant in modern conditions, when mental
activity to comprehend the material is often replaced on the student’s initia-
tive by searching for ready-made answers on the Internet or using symbolic
algebra systems . The report presents a number of pedagogical experiments
aimed at clarifying the conditions and methods of supporting the processes
of comprehending new material in a rich external information environment.

Introduction
Bourbaki’s traditions [1] in the presentation of mathematics influenced the teaching
of mathematics in technical universities. Implicitly, and sometimes explicitly, the
idea was postulated that formal mathematical structures correspond to analogous
intellectual structures in the learner’s brain. From which the conclusion was drawn:
if abstract mathematical structures are strictly consistently presented, moving
from the general to the particular, then in the student’s head there will be a
structure of concepts and mental operations that is adequate to Bourbaki’s books.
However, the process of acquiring knowledge is much more complex and formal
structures do not become a thinking tool if they are not based on already existing
mental structures. Marvin Minsky [2] called this the investment principle. In other
words, understanding the material is not so much a function of correctly organized
mathematical material, but rather a function of all the experience accumulated up
to a given moment.

It can be assumed that the effect of understanding is associated with predic-
tion (the development of the idea of the area of proximal development [3]): even
before the teacher finishes the sentence, the listener already has some model in
his head of what the teacher wants to convey to the student. Two options are
possible: either this model does not contradict what the teacher says and nonin-
sight comprehension occurs [4], or a contradiction between the model and a new
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concept arises and then either insight occurs, that is, a new gestalt arises [5] - a
new look at the material being presented (instant restructuring information [6]),
or the contradiction persists for a longer period.This contradiction is a mechanism
of delayed comprehension.

1. Summary of the report
The report discusses the following ways to understand new mathematical concepts:

1) The traditional way of conveying meaning is activity-based. In the process
of its implementation, the teacher forms in the student pre-set skills that form a
contextual environment for operating objects in the subject area. This specially
formed contextual information environment is associated with semantic construc-
tions that are objectified in the context of this environment.

2) Construction of algorithms that implement constructive descriptions of
the properties of mathematical objects.

3) Setting tasks and interacting with systems that verify hypotheses using
many examples of the subject area.

The report also describes an experiment in which the features of sponta-
neous concept formation were studied based on the subconscious construction of
predictive models.

Conclusion
For future engineers, mathematics is important as a tool, but if earlier Krylov’s
words [7] that mathematics for an engineer is a tool “like an ax and a saw for
a carpenter” could be interpreted as the presence of a set of applied skills, now
the presence of intellectual tools changes the meaning of Krylov’s statement. Now
the "Krylov’s tool" becomes an intellectual toolkit based on the understanding of
abstract mathematical concepts. To achieve this goal, it is necessary to replace
the formally mathematical approach a la Bourbaki with an “investment” approach
based on the existing knowledge, ideas and experience of students.
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On pictures related to some

exponential sums

N.V.Proskurin

Abstract. By numerical experiments with exponential sums in �nite �elds, it
is discovered relation with �at curve known as Kepler trifolium. A theoretical
explanation for this observation is given in the present paper.

0. Preliminaries.

Consider the �eld Fp = Z/pZ of prime order p and a non-trivial character χ of its
multiplicative group extended by setting χ(0) = 0. Let ep be the additive character

x 7→ exp(2πix/p)

of Fp. Given one-variable polynomials f, g over Fp, consider the sum
∑

x∈Fp
χ
(
f(x)

)
ep
(
g(x)

)
. (1)

That is an exponential character sum of mixed type, see [1]. Under some general
assumptions on f , g and χ, one has

∣∣∣
∑

x∈Fp
χ
(
f(x)

)
ep
(
g(x)

) ∣∣∣ ≤ (m+ n− 1)
√
p (2)

with n = deg(g) and m = deg(radical of f), see [1] and [2].

In particular, let ψ be a cubic character and let f(x) = x, g(x) = x2. This case
(2) with χ = ψ implies that the sum

Ep(ψ) =
1

2
√
p

∑

x∈Fp
ψ(x)ep(x2) (3)

is located in the circle D =
{
z ∈ C

∣∣ |z | ≤ 1
}
. We are interested in distribution of

the points Ep(ψ) in D. In the present paper we provide a theoretical explanation
for our numerical experimental observations [4].
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1. Numerical observations.

We have evaluated the sums Ep(ψ) for all cubic characters ψ and for all prime p ≡
1 mod 6 subject to p ≤ 360000. The assumption p ≡ 1 (mod 6) is included here
just to ensure the existence of cubic characters. The following �gure on complex
plane C represents the results originally reported in [4].

On this �gure, it is shown the circle D, its boundary D = {z ∈ C | |z | = 1}, the
real and imaginary axis, and some 18 -petals �ower. The boundary of the petals
are formed by the points Ep(ψ) with p and characters ψ as above. In that follows,
we will recognise six copies of Kepler trifolium here.

2. Gauss sums.

The Gauss sums G(χ) are the ones (1) with f(x) = g(x) = x, so that

G(χ) =
∑

x∈Fp
χ(x)ep(x). (4)

For any prime p and non-trivial character χ one has

|G(χ)|2 = p and G(χ)G(χ̄) = χ(−1)p, (5)

where χ̄ is the complex conjugation of χ. One say G(χ) is a quadratic, cubic or
sextic sums according to χ is a character of order 2, 3 or 6.
By Gauss, for the quadratic character κ, the sum G(κ) is equal to

√
p or i

√
p

according to p ≡ 1 mod 4 or p ≡ 3 mod 4.
To deal with cubic characters, assume p ≡ 1 mod 6. This case we have two cubic
characters, say ψ and ψ̄, the quadratic character κ, and sextic characters κψ and
κψ̄. The sextic sums can be evaluated (see theorem 3.1 in [3]) in terms of cubic
and quadratic ones by the formula

G(κψ̄) = ψ̄(2)G(κ)G(ψ)2/p. (6)

For the cubic characters ψ one has ψ(−1) = 1, so that (5) implies

G(ψ̄) = p/G(ψ). (7)
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3. Evaluation of sums (3) in terms of Gauss sums.

Consider the sum Ep(ψ) in (3) with a cubic character ψ, p ≡ 1 mod 6. One has
ψ(x) = ψ̄(x2) for all x ∈ Fp and

]{x ∈ Fp | x2 = t} = 1 + κ(t) for all t ∈ Fp.

Recall, it is assumed κ(0) = ψ(0) = 0. It follows,

2
√
pEp(ψ) =

∑

t∈Fp
]{x ∈ Fp | x2 = t}ψ̄(t)ep(t)

=
∑

t∈Fp

(
1 + κ(t)

)
ψ̄(t)ep(t) = G(ψ̄) +G(κψ̄).

This can be rewritten as 2
√
pEp(ψ) = p/G(ψ) + ψ̄(2)G(κ)G(ψ)2/p, see (6) and

(7), and �nally as follows.

Proposition 1. For every prime p ≡ 1 mod 6, one has

Ep(ψ) =
1 +QT 3

2T
with T = G(ψ)/

√
p, Q = ψ̄(2)G(κ)/

√
p. (8)

Here ψ and κ are cubic and quadratic characters of Fp and |T | = |Q| = 1. �

4. Kepler trifolium.

Consider the complex plane C with the Cartesian coordinates x = Re z, y = Im z,
z ∈ C, the unit circle D centred at the origin 0, its boundaryD and the curve C

de�ned by the equation

(x2 + y2)2 + 3xy2 − x3 = 0. (9)

This curve is known as Kepler trifolium and also as regular trifolium, three leaf/petal
rose, three leaf/petal clover. It remains unchanged when rotated through the an-
gles of ±2π/3 and it can be given by the polar equation r = cos(3ϕ), r being a
point on the axis obtained by rotation of the real axis through the angle ϕ.
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5. Parametrization.

Consider again the Kepler trifolium C. We intend to show that C can be parametrized
by a rational function onD. To be precise, we mean the complex function

z 7→ 1 + z3

2z
(10)

and its restriction toD.

Proposition 2. The function (10) takes any point of D to some point of C. In
particular, it takes cubic roots of −1 to the triple point 0 of C. It takes cubic roots

of 1 to the cubic roots of 1. Except for the point 0, every point of C is the image

of an unique point ofD. The boundary of each petal is the image of someone arc

inD whose endpoints are the cubic roots of −1.

Proof. Let z = x+ iy with real x and y. If z ∈D then x2 + y2 = 1 and

1 + z3

2z
=
z̄ + z2

2
= X + iY

with X = (1 + x)S, Y = yS, S = x− 1

2
.

It follows, X2 = (1 + x)2S2, Y 2 = (1− x2)S2, X2 + Y 2 = 2(1 + x)S2, and then

(X2 + Y 2)2 + 3XY 2 −X3 = 0.

According to (9), that means Z = X + iY is a point of the curve C, as required.
In particular, if z is a cubic root of −1 then 1 + z3 = 0 and Z = 0. If z is a cubic
root of 1 then Z = z̄ and that is a cubic root of 1 as well.
Now let X and Y be the real and the imaginary parts of some point Z ∈ C.
Assume, this Z is a point of the right petal on the �gure and Z 6= 1. We have
X > 0 and X 6= 1. For every such X, there is a unique x ≥ −1 satisfying

(1 + x)S = X with S = x− 1

2
.

This x satis�es 1/2 < x < 1. Then we should take y satisfying Y = yS and to check
that x2 + y2 = 1. The point x+ iy is the only one ofD whose image is equal to Z.
This point belongs to the arc ofD that passes through 1 and whose endpoints are
exp(±πi/3). The points Z of another two petals can be treated similarly. �
Proposition 3. Let v = exp(it) and w = exp(it/3) with some t ∈ R. The image

ofD under the function

z 7→ 1 + vz3

2z
(11)

is the curve C ′ = wC obtained by rotation of C around 0 through the angle t/3.
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Proof. As the point z runs overD, the point wz runs overD and the point

1 + vz3

2z
= w

1 + (wz)3

2(wz)

runs over C ′ = wC by Proposition 2, as required. �
6. Distribution of the sums (3).

Now we are ready to give a theoretical explanation to the shown above distribution
of the sums Ep(ψ), see Section 1. Compare the formula (8) in Proposition 1 with the
formula (11) in Proposition 3. It follows from the Gauss formulas for the quadratic
sums that the only possible values of the coe�cient Q in (8) are either 1, ω, ω2 or
i, iω, iω2 according to p ≡ 1 mod 4 or p ≡ 3 mod 4. Here ω = exp(2πi/3), so that
1, ω, ω2 are all possible values of ψ(2). We �nd easily that any point Ep(ψ) in (3)
belongs to some of six curves wC obtained by rotation of C around 0 through the
angles w = 0, ±2π/9, π/6, π/2± π/9, so that

Ep(ψ) ∈ C̃ =
⋃

w

wC. (12)

This is consistent with the �gure presented in Section 1.
It remains an open question whether the countable set of all the points Ep(ψ)

is everywhere dense in the curve C̃ in (12). It seems likely that the set of all the

points Ep(ψ) is everywhere dense in C̃ (with the topology induced by the canonical
topology in C). In the meantime, the points T in Proposition 1 forms everywhere
dense subset in D. That is known from research of the cubic Gauss sums related
to the Kummer problem [5].
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Partially Ordered Derivations in Sequent Calculi

for Nonstandard Logics

Alexander Sakharov

1. Introduction

Nonstandard logics have become the center of modern studies in mathematical
logic because these logics have numerous applications especially in the area of
arti�cial intelligence. These logics have nonstandard logical connectives requiring
peculiar axioms or inference rules. These logics may also include nonlogical axioms
specifying properties of concrete predicates and functions.

Sequent calculi are perhaps the most common logical formalism [4]. This
formalism is simple and versatile. In addition to inference rules for logical
connectives and quanti�ers, sequent calculi can incorporate arbitrary axioms.
Sequent calculi support both top-down and bottom-up proof search. Nonetheless,
sequent calculi commonly lack normal forms of derivations. Many rule chains
are permutable [2]. Reducing derivation choices arising from rule permutability
is a challenging long-standing problem. For some standard logics, permutation-
free sequent calculi have been crafted [3, 6, 1]. But these results have not been
generalized.

The main result of this work is that inference in a variety of sequent calculi
remains complete if it is restricted to derivations in which some pairs of consecutive
inference rules are ordered. Additionally, weakening and contraction rules are
merged with other rules which reduces choices during inference. These results
are applicable to sequent calculi with non-standard inference rules and additional
axioms including nonlogical ones. This research is a step forward in the quest
for normal forms in various sequent calculi, in particular, in applied calculi with
multiple axioms in which cut is heavily used [5].

2. Sequent Calculi

We use standard logical terminology [4]. Upper-case Latin letters are metavariables
denoting formulas in inference rules and axioms. Upper-case Greek letters are
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metavariables denoting formula multisets. Usually, the outcome of inference is
sequents of the form ⊢ G where formula G is called a goal. A calculus is called
consistent if sequent ⊢ is not derivable.

Metaformulas are built from formula metavariables, substitutions, logical
connectives, and quanti�ers. Expressions having the following forms are also
called metaformulas: Aθ and A∗θ where θ = {x1/t1, ..., xk/tk} is a substitution.
The expression A∗θ means that the formula matching metavariable A is the
only formula in its sequent where variables of the substitution θ occur. Multiset
metavariables and expressions of the form ⋄Π are called metasets. The expression
⋄Π denotes the multiset {⋄A|A ∈ Π} where ⋄ is a unary connective. Sequents in
logical rules are comprised of metaformulas and metasets.

Inference rules in sequent calculi are split into structural and logical. The
structural rules are essentially universal for all of the calculi whereas logical
rules vary. Logical axioms are comprised of metaformulas and possibly formulas.
Nonlogical axioms may contain formulas only. Axioms that are not purely logical
are also crucial for calculi specifying applied logics. The equality axiom and
variants of the induction axiom are examples of such axioms. We assume that
any axiom has no instances in which there are identical formula in the antecedent
or in the succedent.

De�nition 1. If all metaformulas/metasets containing the same metavariable
are identical, they are called context. All other metaformulas/metasets from the
conclusion are called principal. All other metaformulas/metasets from premises are
called active. Formulas matching metaformulas/metasets are also called principal,
active, context as their respective metaformulas/metasets.

De�nition 2. A multi-premise logical inference rule is called multiplicative if no
context metavariable from one premise occurs in the other premises of the rule. A
multi-premise logical inference rule is called additive if every context metavariable
occurs in all premises of the rule.

De�nition 3. A logical rule is called clear if
- Every metavariable from any of its premises also occurs in the conclusion.
- No multiset metavariable occurs in both antecedents and succedents.
- It is single-premise, multiplicative, or additive.
- It has one principal metaformula and no principal metasets.
- Every premise has one active metaformula if the rule has multiple premises.
- Every active formula is a subformula of the principal formula or a result of
applying a substitution to such subformula.

- The context of any premise antecedent or succedent, if present, is a single multiset
metavariable.

- There are no constraints on the application of this rule except for those given by
metaformulas.

De�nition 4. A clear rule is called simple if it has a single premise with one active
metaformula or it is multiplicative.
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3. Contraction and Weakening Merging

Let [Γ] denote the result of applying zero or more possible contractions to multiset
Γ. If a calculus does not include contraction, then [Γ] = Γ. If a calculus includes
both weakening and contraction, then the [ ] operation eliminates all duplicate
formulas. If a calculus includes contraction and does not include weakening, then
this operation is non-deterministic, i.e. none, some, or all contractions are applied.

Let us modify the conclusion of cut and all logical rules by applying [ ] to both
the antecedent and the succedent of the conclusion of cut and all logical inference
rules. The calculus obtained from calculus L by applying [ ] is denoted L′.

Proposition 1. For every sequent calculus L, any derivation can be transformed
into a L′ derivation with the same endsequent and vice versa.

Theorem 1. The contraction rules are admissible in any L′ sequent calculus.

Let us modify any calculus L′ with weakening. For any single-premise clear
rule having more than one metaformula, let us add logical rules to this calculus.
Each additional rule is obtained by removing one or more metaformula but not all
of them from the premise. Also, additive clear rules are replaced by multiplicative
rules if this calculus has both contraction and weakening. The modi�ed calculus
will be denoted L”. For any calculus L′ without weakening, L” is identical to L′.

Proposition 2. For every sequent sequent calculus L, any L′ derivation can be
transformed into a L” derivation with the same endsequent and vice versa.

Theorem 2. For every consistent sequent calculus L, any L derivation of sequent
⊢ G can be transformed into such L” derivation with the same endsequent and
without the contraction rules that every weakening rule is either followed by another
weakening rule or by a logical rule that is additive or is not clear.

4. Partially Ordered Derivations

De�nition 5. Strict order relation ≻ on formulas and terms is called a
simpli�cation order if it satis�es the following conditions:

- there is no in�nite sequence of formulas F0 ≻ F1 ≻ ...

- if L/l is a particular formula/term occurrence in formula E, formula F is
obtained from E by replacing this occurrence with formula/term R/r, and
L ≻ R/l ≻ r, then E ≻ F

- if R/r is a subformula/subterm of formula/term L/l, then L ≻ R/l ≻ r

- if L,R/l, r are formulas/terms and L ≻ R/l ≻ r, then Lθ ≻ Rη/lθ ≻ rθ for any
substitutions θ and η

De�nition 6. Formula A is maximal (minimal) with respect to the set of formulas
S if B ≻ A (A ≻ B) does not hold for any other formula B ∈ S.
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Theorem 3. For any consistent sequent calculus L and simpli�cation order ≻ on its
formulas and terms, any L derivation of sequent ⊢ G can be transformed into a L”
derivation with the same endsequent, without the contraction, with weakening rules
satisfying Theorem 2, and such that the following holds for any two consecutive
inference rules:
1) If both rules are cut, then the upper cut formula is maximal with respect to the
lower cut formula.

2) If the upper rule is simple and the lower rule is cut, then the cut formula is
principal in the upper rule.

3) If both rules are simple, then the principal formula of the lower rule is maximal
with respect to the principal formula of the upper rule.

Theorem 4. For every consistent sequent calculus L with both weakening and
contraction, Theorem 3 holds even if the word 'simple' is changed for the word
'clear'.
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Remarks on Tarski’s elimination

Victor Selivanov

Abstract. Tarski’s elimination theorem (stating that, in the structure of re-
als, any first-order formula in the language of ordered fields is equivalent to a
quantifier-free formula) is fundamental for several areas including computer
algebra. In this talk, we discuss some earlier and some newer facts about pos-
sible extensions and applications of Tarski’s theorem and some other results
of interest for symbolic and numeric computations. In particular, we concen-
trate on relationships of this topic with the theory of computable models and
constructive mathematics.
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On the Length of an Unsatis�able Conjunction

Alexandr V. Seliverstov

Abstract. We consider a lower bound on the length of a conjunction of some
propositional formulae such that every unsatis�able conjunction contains an
unsatis�able subformula. In particular, our method is applicable for 2-CNF,
symmetric 3-CNF, and conjunctions of voting functions in three literals.
The proof is algebraic. So, a large conjunction can be reduced in a non-
deterministic way. This reduction improves some upper bounds on the com-
putational complexity.

Introduction

Let us denote by ⊥ and ⊤ two Boolean constants. For two integers α < β, the
set α-or-β-in-SAT consists of CNFs such that, for some (⊥,⊤)-evaluation, every
clause contains either exactly α or exactly β true literals.

For k < α < β, the set α-or-β-in-SAT contains no k-CNF.

For k < β, a k-CNF φ belongs to 1-or-β-in-SAT i� φ belongs to 1-in-k-SAT.
This set consists of k-CNF such that, for some (⊥,⊤)-evaluation, every clause
contains exactly one true literal.

A 2-CNF φ belongs to 1-or-2-in-SAT i� φ is satis�able.

A 3-CNF φ belongs to 1-or-2-in-SAT i� φ belongs to NAE-3-SAT. This set
consists of 3-CNF such that, for some (⊥,⊤)-evaluation, every clause contains
both true and false literals. A 3-CNF φ(p1, . . . , pn) belongs to NAE-3-SAT i�
φ(p1, . . . , pn) ∧ φ(¬p1, . . . ,¬pn) is satis�able.

It is well known that both problems whether a given 3-CNF belongs to NAE-
3-SAT and whether it belongs to 1-in-3-SAT are NP-complete. The formula length
serves as a natural parameter for estimating the runtime. Therefore, the possibility
of replacing the original 3-CNF with a subformula is interesting. On complexity
upper bounds refer to [1]

Let us �x arbitrarily small ε > 0. If the number of clauses is less than the
threshold (1 − ε)n, then almost all 2-CNFs in n variables are feasible. On the
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contrary, if the number of clauses is greater than the threshold (1 + ε)n, then
almost all 2-CNFs in n variables are unsatis�able [2, 3].

Such a threshold is usually called a phase transition and is also shown by
random samples of several types of formulae.

A k-CNF is called d-regular when each clause contains exactly k literals and
each variable appears in exactly d clauses. For any su�ciently large number k,
the membership of a random d-regular k-CNF to the set NAE-k-SAT undergoes a
phase transition with increasing d at some critical value dk, which depends on k.
As the number of variables increases, for d < dk, the fraction of d-regular k-CNF
belonging to NAE-k-SAT tends to one. For d > dk, this fraction tends to zero [4].
A similar result is known for d-regular k-CNFs having exactly two true literals per
clause [5].

Next, let us consider a bound that holds for all, and not just almost all,
formulae in consideration. In the proof, we replace a CNF with a system of alge-
braic equations depending on auxiliary variables, one per clause. So, the original
satis�ability problem is reduced to the problem of the incidence of an a�ne sub-
space de�ned by a system of linear equations and a set of points with coordinates
from the set {0, 1}. From a geometric point of view, removing a clause corresponds
to a projection onto some coordinate subspace [6]. In turn, the projection corre-
sponds to eliminating the auxiliary variable. The solution to a system of equations
in which each variable takes values from the set {0, 1} is called a (0, 1)-solution.
The existence of a (0, 1)-solution to a system of linear equations over the �eld of
rational numbers is also a well-known computationally di�cult problem [7].

1. Results

Theorem 1. Given a system of m linear equations of the type

yj = ℓj(x1, . . . , xn)

in m+n variables y1, . . . , ym, x1, . . . , xn, where ℓj denotes a linear function over

a certain �eld. If this system has no (0, 1)-solution and the inequality m > 2n+ 2
holds, then there is an equation in the system such that the subsystem obtained

by removing this equation also has no (0, 1)-solution.

Theorem 2. Given a propositional CNF φ(p1, . . . , pn) withm clauses in n variables.

If φ does not belong to α-or-β-in-SAT and the inequality m > 2n+ 2 holds, then

there exists a CNF that does not belong to α-or-β-in-SAT and is obtained by

removing some clause from φ.

Proof. Let us de�ne by induction a function f that maps a clause to a pseudo-
Boolean linear function over the �eld of rational numbers. f(⊥) = 0 and f(⊤) = 1.
For variables f(pi) = xi. For the negation f(¬pi) = 1 − xi. Next, the jth clause
φj = ℓ1∨ · · ·∨ ℓk corresponds to the expression f(ℓ1)+ · · ·+f(ℓk)−α− (β−α)yj ,
where the new variable yj appears only once. Note that α ̸= β.
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Next, the conjunction of clauses φj corresponds to the system of linear equa-
tions f(φj) = 0, where 1 ≤ j ≤ m. This system depends on m + n variables. All
m equations are linearly independent, since each one depends on its own auxiliary
variable. Every (0, 1)-solution to the system corresponds to a (⊥,⊤)-evaluation of
propositional variables such that in each clause either exactly α or exactly β lit-
erals are true. Conversely, for such a (⊥,⊤)-evaluation of propositional variables,
there is a (0, 1)-solution to the system of linear equations. If pi = ⊥, then xi = 0.
If pi = ⊤, then xi = 1. If α literals are satis�ed in the jth clause, then yj = 0. If
β literals are satis�ed, then yj = 1. According to Theorem 1, if the system has no
(0, 1)-solution, then this property is preserved after eliminating some additional
variable yj , i.e., after removing the jth clause from φ.

2. Discussion

The bound on the number of clauses in an unsatis�able subformula in 2-CNF
is close to optimal. There is an unsatis�able 2-CNF with m = 2n clauses in n
variables for which the subformula obtained by removing any clause is satis�able.
An example is 2-CNF

(¬p1∨p2)∧ (p1∨¬p2)∧ · · ·∧ (¬pn−1∨pn)∧ (pn−1∨¬pn)∧ (pn∨p1)∧ (¬pn∨¬p1),

where each variable enters twice positively and twice negatively. This 2-CNF is
equivalent to the conjunction of formulae expressing the equivalence of the vari-
ables pj and pj+1 for j < n, as well as the equivalence of the variable pn and
the negation of the variable p1. It is impossible. But removing one clause from
this 2-CNF corresponds to replacing some equivalence with an implication. The
resulting formula is satis�able for some (⊥,⊤)-evaluation for which the antecedent
of this implication is false.

Note that the bound on reducing the number of clauses lies in the segment
where almost all 2-CNFs are unsatis�able [2]. So, the possibility of removing some
clause from an unsatis�able 2-CNF does not impose unexpected additional restric-
tions on the unsatis�able subformula. Also, the results obtained for other classes
of formulae provide an upper estimate for the phase transition boundary, when it
exists.

It is possible to consider conjunctions of formulae of another type. Let us
denote by maj(p1, p2, p3) the voting function (majority). Its value is equal to the
most frequently occurring among (⊥,⊤)-values of the propositional variables p1,
p2, and p3. For literals ℓij the conjunction ∧jmaj(ℓ1j , ℓ2j , ℓ3j) is satis�able if and
only if 3-CNF ∧j(ℓ1j ∨ ℓ2j ∨ ℓ3j) belongs to the set 2-or-3-in-SAT. Therefore,
Theorem 2 is applicable to formulae of this type.
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Conclusion

Reducing the formula length leads to a decrease in some estimates of computa-
tional complexity. However, it does not guarantee a reduction in the running time
of some heuristic algorithms. On the other hand, the main result is a pure existence
theorem, which does not provide a fast algorithm for �nding an unsatis�able sub-
formula. The result is consistent with the hypothesis that the satis�ability problem
is computationally hard in the worst-case.
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The H-Transform in WolframMathematica and Its

Particular Cases

Oleg Marichev and Elina Shishkina

Abstract. Nowadays, the Fox H-function is the most important function, hav-
ing accumulated almost all named functions, and yet it is widely unknown.
This complicated function includes four groups of parameters inside of gamma
functions, which allows it to accumulate about 150 named functions of very
di�erent types: power, exponential, logarithmic, discontinuous, etc. Each of
these functions or their combinations can be a kernel of integral transform.
The kernels of classical integral transforms (Laplace, Mellin, Fourier, Hilbert,
Hankel and others) are the cases of Fox H-function. Each transform can be
applied to the Fox H-function or its particular cases, which allows us to eval-
uate approximately 80% of integrals, presented in handbooks nowadays. Our
talk is devoted to the Fox H-transform and its particular cases.

1. Fox H-Function in Wolfram Mathematica

Fox H-functions (introduced in [1]) are versatile special functions that enable a
uni�ed, coherent approach to various areas, such as integral transforms and frac-
tional calculus. The Fox H-function is de�ned by a Mellin-Barnes type integral
with an integrand involving products and quotients of Euler gamma functions.
It generalizes most known elementary and special functions, allowing nearly all
integral transforms to be expressed as H-transforms. Detailed information about
Fox H-functions can be found in [2, 3, 4, 5]. Some applications of H-functions are
given in [6, 7].

H-function is de�ned by

Hm,n
p, q [z] ≡ Hm,n

p,q

[
z

∣∣∣∣
(ai, αi)1,p
(bj , βj)1,q

]
=

1

2πi

∫

L

Hm,n
p,q (s)z−sds, z ̸= 0, (1)
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where

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai, αi)1,p
(bj , βj)1,q

∣∣∣∣s
]
=

m∏
j=1

Γ(bj + βjs)
n∏

i=1

Γ(1− ai − αis)

p∏
i=n+1

Γ(ai + αis)
q∏

j=m+1

Γ(1− bj − βjs)

, (2)

m,n, p, q ∈ N, m ≤ q, n ≤ p, αi, βj ∈ R, αi > 0, 1 ≤ i ≤ p, βj > 0, 1 ≤ j ≤ q.
Here L is a specially chosen in�nite contour, described in [2, 3, 4, 5]. In (2)

an empty product, if it occurs, being taken to be one.
Fox H-function was implemented in the Wolfram Mathematica system as

FoxH[{{{a1,α1},...,{an,αn},{{an+1,αn+1},...,{ap,αp}}},

{{{b1,β1},...,{bm,βm},{{bm+1,βm+1},...,{bq,βq}}},z].

and introduced commands that allow users to transform many given function into
an H-function or G-functions and back (if possible) [8, 9]. For example, com-
mands FoxHReduce[expr,z], MeijerGReduce[expr,z], FunctionExpand can be
used for these purposes, but currently it is better to use functions associated
with the speci�ed resource: ResourceFunction["MeijerGForm"][expr,z] and
ResourceFunction["FoxHForm"][expr,z].

2. Calculation of Mellin transform of product of two H-functions

For calculation of integrals by method described in the book of O.I.Marichev [10]
we can use Mellin transform de�ned by the formula

K∗(s) =

∞∫

0

K(x)xs−1dx, s = γ + iτ

is used. Then inverse Mellin transform is presented by integral

K(x) =
1

2πi

γ+i∞∫

γ−i∞

K∗(s)x−sds, x > 0, Re(s) = γ

and the Mellin convolution of functions K1(x) and K2(x) for x > 0 can be written
thought relation

(K1 ◦K2)(x) =

∞∫

0

K1(t)K2

(x
t

) dt
t

= K(x).

We have
(K1 ◦K2)

∗(s) = K∗
1 (s)K

∗
2 (s).

In 1966, Gupta K.C. and Jain U.C. studied two integrals of Mellin convolution
type derived from the product of two H-functions, and provided conditions for
their convergence. These integrals are studied on pages 46-47 of the book [3] and
on page 60 of the book [11]. Here, we consider a more generic integral along with
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a more comprehensive set of conditions for convergence, which encompass those
two integrals as speci�c cases.

The most general formula includes a lot of integrals is

∞∫

0

t
c−1

H
m,n
p,q

[
u2t

r2

∣∣∣∣
(ai, αi)1,p

(bj , βj)1,q

]
· HM,N

P,Q

[
u1t

r1

∣∣∣∣
(ci, γi)1,P

(dj , δj)1,Q

]
dt = θ

(
−

r1

r2

)
u
− c

r2
2

|r2|
×

×H
m+M,n+N
p+P,q+Q

[
u1u

− r1
r2

2

∣∣∣∣
(ci, γi)1,N , (Ai,Bi)N+1,N+n ,

(
Aj ,Bj

)
n+1,p

, (cj+N−p, γj+N−p)p+1,p+P−N

(di−m, δi−m)m+1,m+M , (Ci,Di)1,m ,
(
Cj ,Dj

)
Q+1,Q+q−m

, (dj , δj)1+M,Q

]
+

+θ

(
r1

r2

)
u
− c

r2
2

|r2|
×

×H
n+M,m+N
q+P,p+Q

[
u1u

− r1
r2

2

∣∣∣∣
(ci, γi)1,N , (Ei,Fi)N+1,N+m ,

(
Ej ,Fj

)
m+1,q

, (cj+N−q, γj+N−q)q+1,q+P−N

(di−n, δi−n)n+1,n+M , (Gi,Hi)1,n ,
(
Gj ,Hj

)
Q+1,Q+p−n

, (dj , δj)1+M,Q

]
,

(3)

where θ is the Heaviside function

θ(x) =

{
1, x ≥ 0

0, x < 0
,

Ai = a−N+i+
cα−N+i

r2
, Bi = − r1α−N+i

r2
, Aj = aj +

cαj

r2
, Bj = −αjr1

r2
, Ci = bi+

cβi

r2
,

Di = − r1βi

r2
. Cj = bm−Q+j +

cβm−Q+j

r2
, Dj = − r1βm−Q+j

r2
, Ei = 1 − bi−N − cβi−N

r2
,

Fi = r1βi−N

r2
, Ej = 1 − bj − cβj

r2
, Fj =

r1βj

r2
, Gi = 1 − ai − cαi

r2
, Hi = r1αi

r2
,

Gj = 1− an−Q+j − cαn−Q+j

r2
, Hj =

r1αn−Q+j

r2
.

The integral transform of the form (see [5], p. 71, formula (3.1.1))

(Hf)(x) =

∞∫

0

Hm,n
p,q

[
xt

∣∣∣∣
(ai, αi)1,p
(bj , βj)1,q

]
f(t)dt

where Hm,n
p,q is the H-function de�ned in (1), is called the H-transform of a function

f(t).

H-Transform can be calculated by (3). The H-Transform is one of the most
general integral transforms today is the H-Transform, which uses the Fox's H-
function as a kernel. Anatoly A. Kilbas and Megumi Saigo wrote a book [5] which
is fully devoted to the H-Transforms.

3. Examples

Formula (3) can be used for evaluation integral from product of power, Bessel Jν
and Mittag�Le�er functions with arbitrary power arguments. This result can be
interpreted as values of Mellin transform from corresponding product of Jν and
Mittag�Le�er functions or as Hankel transform from product power and Mittag�
Le�er functions or Mittag�Le�er transform from product power and Bessel Jν
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functions. Below we give value of this integral:

2

∞∫

0

tc−1Jν (2u2t
r2)Eα,a (−u1t

r1) dt =

= θ

(
−r1
r2

)
u
− c

r2
2

|r2|
H2,1

1,4

[
u1u

− r1
r2

2

∣∣∣∣
(0, 1)(

c
2r2

+ ν
2
,− r1

2r2

)
, (0, 1), (1− a, α),

(
c

2r2
− ν

2
,− r1

2r2

)
]
+

+θ

(
r1
r2

)
u
− c

r2
2

|r2|
H1,2

3,2

[
u1u

− r1
r2

2

∣∣∣∣
(0, 1),

(
1− c

2r2
− ν

2
, r1
2r2

)
,
(
1− c

2r2
+ ν

2
, r1
2r2

)

(0, 1), (1− a, α)

]
.
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Pedestals: Polynomial matrices with polynomial

eigenvalues

Senya Shlosman

Abstract. A construction will be presented that maps each poset X to a

square matrix MX . Its matrix elements are enumerated by pairs of linear

orders P,Q on X, and are monomials of variables xi. Our main result is that

the eigenvalues of MX are polynomials in xi with integer coe�cients.

In collaboration with Richard Kenyon, Maxim Kontsevich, Oleg Ogievet-

sky, Cosmin Pohoata and Will Sawin.
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Some geometric properties of shifted Young dia-
grams of maximum dimensions

Vasilii Duzhin and Egor Smirnov-Maltsev

The problem of finding Young diagrams of straight shape with large dimen-
sions, i. e. those with a large number of Young tableaux, was previously studied
in [1, 2]. This research is a continuation of works [3, 4] in which a similar prob-
lem was investigated for strict Young diagrams. The approaches used in the above
works have in common that the original diagram λn is transformed into a new one
λ′n of the same size n such that the dimension of λ′n is greater than the dimension
of λn. Here we present two new methods for finding strict Young diagrams of larger
dimensions which are based on the same idea.

Consider a strict Young diagram λ = (x1, x2, ..., xs) of size n. The first
method is to move a box from the (i − 1)th column to the ith one. Thus, the
resulting diagram of size n will be λ′ = (x1, ..., xi−2, xi−1 − 1, xi + 1, xi+1, ..., xs).
We prove that the dimension of λ′ is greater than the dimension of λ if the following
condition is met:

xi−1 − xi ≥
3 +

√
9 + 8xi
2

. (1)

Note that in the case when inequality (1) is not satisfied, the above transfor-
mation can lead to both a decrease in dimension and an increase in it.

Consider a strict Young diagram λ = (x1, x2, ..., xs). The tail of length t is
the last t columns of λ. Tail size ñ is the number of boxes in these t columns. The
second method is to change a tail of length t of size ñ to a tail of length t + 1 of
the same size. The resulting Young diagram is λ′ = (x1, ..., xs−t, y1, ..., yt+1).

During the research, it was hypothesized that the dimension of the diagram
λ is less than the dimension of the diagram λ′ if 2 conditions are met:

1. The dimension of a diagram λt = (xs−t+1, xs−t+2, ..., xs) is not greater than
the dimension of a diagram λ′t = (y1, y2, ..., yt+1).

2. There is no t1 < t such that there is a diagram λ′t1 = (ỹ1, ỹ2, ..., ỹt1+1) whose
dimension is not less than the dimension of the diagram

λt1 = (xs−t1+1, xs−t1+2, ..., xs).
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This conjecture was proven for t equal to 1 and 2. However, already for t
equal to 7 a counterexample to it was found. This work was supported by grant
RSF 22-21-00669.
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Paradoxes of Game Semantics

Sergei Soloviev

Traditionally, game semantics was developed to confirm or complement some
existing semantics of logical systems. Usually it was established that the Verifier
has a winning strategy in the game associated with the formula A when A is
derivable in some corresponding deductive system or true in a model-theoretical
sense.

It is well known that the restrictions on the classes of strategies used by
Verifier and Falsifier may break this relationship, so the question of “admissible”
restrictions has been studied: for example whether it is possible to consider only
computable strategies and still obtain the same “adequate” semantics.

The games with backward moves (i.e., where the Verifier is permitted to
“replay” if it comes to a “bad” position) were proposed to improve correspondence
between classical provability and existence of recursive winning strategies [1, 4, 5].

Proposition 9 ( [4]). For every first order language L, every decidable L-
structure M and every set Σ of axiom sequents validated by semantic games on
M , any proof φ in ` Σ is validated by games on M (i.e., one may construct a
winning strategy for Verifier in these games).

We study the effect of restrictions from a different point of view: how much
the semantics may be deformed due to some natural asymmetry between players.
We consider various known kinds of semantic games, for example, games with
backward moves. It turns out that in many semantic games, in particular, the
games with backward moves, and under some conditions the Verifier may win
even if the formula is not true in ordinary logical semantics.

The following general result may be used to describe paradoxal situations of
this kind.

• Assume that Verifier can compute any general recursive function and knows
(and can compute) a universal function U(x, y) for the strategies f of Falsifier,
i.e., every f = U(k,−) for some k.

• Assume that if Verfier knows the strategy of Falsifier it can win. That is,
Verifier can compute another function W (x, y) such that vk = W (k,−) wins
against fk = U(k,−).

151



2 Sergei Soloviev

• Here we may assume that y ∈ N are the codes of partial plays (they may
include backward moves).

• Theorem. In the conditions listed above the Verifier has a recursive strategy
that wins against any strategy of the Falsifier.
Two significant examples (not based on this theorem) are considered as well.
Example 1.Let us consider the following (false) formula:

φ = ∃x∀y.(y ≤ A(x)).

Let here A be the Ackermann’s function.
• In games without backward moves, since for Verifier the history is empty, the

strategies of Verifier are just natural numbers (values of x). The strategies of
Falsifier are functions f : N → N . If Verifier chooses x then the answer of
Falsifier is f(x). Let the strategies of Falsifier be limited to the class of PR
functions.

The formula is false on N , but there is no winning strategy for Falsifier
because A grows faster than any PR function. There is no winning strategy
for Verifier as well, because for any x there exists some PR function f such
that f(x) > A(x).

• Let us consider the games with backward moves. Now the strategies of Verifier
are functions on histories (not empty after replay). And the strategy that
takes the values 0, ..., n... (during n-th replay) is winning for Verifier against
all PR-strategies of Falsifier because A(n) will outgrow any PR-function. (If
Falsifier has memory, its strategies are PR functions on histories, but histories
may be coded by numbers of the lists of values. Enumeration is PR, and with
0, ..., n... as values of y the resulting function is also PR.)
Example 2. (A more extreme example.)

• Generalized Ramsey theorem.
• Recall [2]: A set of integers, S, is large if S is non-empty, and (if s is its least

element) S has at least s elements.
• A being a set, b ∈ N , A[b] denotes the set of all subsets of A of cardinality
b. If F : A[b] → X, a subset B of A is homogeneous for F if F is constant
on B[b]. Each integer n is, as usual, identified with the set of integers less
than n. For a, b, c ∈ N, a, b, c > 0, a → (large)bc means that for every map
F : a[b] → c there is a large homogeneous set for F of cardinality greater than
b (this relation is PR).

• (∀b, c ≥ 1)(∃a ≥ 1)(a→ (large)bc) is the generalized Ramsey’s theorem. It is
not provable in Peano Arithmetic, but provable in second order arithmetic [2].

• We may consider the game associated with its classical negation

(∃b, c ≥ 1)(∀a ≥ 1)¬(a→ (large)bc)

This formula is false but the value of a (that gives a counterexample) grows
faster that any function that is provably general recursive in Peano Arith-
metic.
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• Thus, like in Example 1, in games without backward moves there is no win-
ning strategy for Falsifier in the class of provably general recursive functions.

• In games with backward moves the simple strategy for Verifier (take the val-
ues 0, 1, ... for subsequent replays) wins against any provably general recursive
strategy for Falsifier.
Conclusion. It may be argued that completely automated verification (not

checked by humans) is related to semantic games in Game Semantics. This under-
lines the relevance of “perversions” considered above.
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Periodic orbits in the shape space

Vladimir Titov

Abstract. Periodic orbits of the general three bodies problem with linear sym-
metry and 2 − 1-symmetry are considered in the shape space. The moment
of inertia of the orbits under consideration does not change much during the
period, so it is enough to look these orbits in the shape sphere or in the space
of angular coordinates.

Introduction

It is shown in [1] that the finite symmetry groups of the general planar three-body
problem are exhausted by 10 groups. Two of these groups served as the basis
for the search for symmetric periodic solutions [2]. The found trajectories can be
mapped into the shape space, such transformation is unique up to the rotation of
the original barycentric system. Since the distance from the origin varies little in
the shape space for these trajectories (within ±10%), then for qualitative analysis
we can limit ourselves to their projection onto the shape sphere.

1. The shape space

The shape space is the space of congruent triangles, configurations of the general
three body problem. This space is obtained by reducing the configuration space of
the problem by translations, and then by reducing by rotations. The first reduction
is performed by moving to the Jacobi coordinates

Q1 = r2 − r1,

Q2 = r3 −
m1r1 +m2r2
m1 +m2

,

the second is the Hopf map: considering the coordinates Q1 and Q2 as points of
a complex space, we introduce

ξ1 =
1

2
µ1|Q1|2 −

1

2
µ2|Q2|2,

ξ2 + iξ3 =
√
µ1µ2 Q1Q̄2.

(1)
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The three-dimensional space Ξ = (ξ1, ξ2, ξ3) is the space of oriented congruent
triangles, each point of this space represents a class of such oriented congruent tri-
angles. This space is called the shape space, and it is in this space that we will study
the properties of the solutions to the three-body problem under consideration.

Table 1. Orbits with line symmetry

m1 = 0.99, m2 = 1.01, m3 = 1.0
A E |J | ω [Imin, Imax] Stab

11.42286 -0.606002 1.36301 1/4 [10.095,10.108] +
12.04740 -0.639135 1.19429 1/3 [7.508,7.557] +
12.06332 -0.639979 1.17690 1/3 [7.489,7.538] +
12.07962 -0.640844 1.15915 1/3 [7.471,7.520] +
13.15385 -0.697833 0.92132 1/2 [5.474,5.590] +
13.15566 -0.697930 0.93926 1/2 [5.474,5.590] +
13.15748 -0.698026 0.95484 1/2 [5.534,5.591] +
14.06146 -0.745984 0.83708 1/3 [5.156,5.393] -
14.08066 -0.747002 0.85327 1/3 [5.114,5.347] -
14.09948 -0.748001 0.86909 1/3 [5.098,5.332] -
14.55725 -0.772286 0.88706 1/4 [5.253,5.574] -
16.64808 -0.883208 1.19288 1/3 [3.830,3.964] -
16.76479 -0.889400 1.37020 1/3 [6.487,6.492] +
17.80747 -0.944715 2.06327 1/4 [3.189,3.517] -
20.59152 -1.09242 1.45497 1/3 [6.276,6.278] +

In this space the moment of inertia I is given by simple expression:

I =
√
ξ21 + ξ22 + ξ23 . (2)

that is, in the shape space it represents the distance of a point (ξ1, ξ2, ξ3) to the
origin of coordinates and, if you enter in space Ξ spherical coordinates ρ, ϕ, θ, then
the coordinate ρ is naturally considered the size of a triangle, and ϕ, θ are angular
variables that determine its shape. Naturally, the coordinate ρ coincides with the
moment of inertia. In the shape space, all properties related to the moment of
inertia of the system are naturally related to the size of the triangle. You can take
the square root of ρ for the size of the triangle, then the unit of such value will
coincide with the unit of the length. In any case, the points of a sphere of any fixed
radius, for example, ρ = 1 or ρ = 1/2, will be responsible precisely for the shape
of a triangle, such a sphere is called shape sphere, and the entire shape space is a
cone above this sphere with a vertex at the point of triple collision (0, 0). Thus, a
point on the shape sphere is a class of similar triangles, all points on the ray in the
shape space, beginning in the origin correspond to similar configurations of three
bodies and differ only by size (see, for example [3].

Evidently, the equator of the sphere of shapes (and the plane ξ3 = 0) cor-
respond to collinear configurations (Q1 × Q2 = 0). Thus, all points of double
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Table 2. Orbits with 2− 1-symmetry and “figure-eight”

m1 = m2 = 0.95, m3 = 1.1
A E |C| ω [Imin, Imax] Stab

10.61083 -0.562922 1.73204 1/5 [13.520,18.706] +
11.87886 -0.630193 1.34061 1/3 [7.646,7.695] +
12.41405 -0.658586 1.22094 2/5 [6.446,6.518] +
12.43822 -0.850687 3.17929 1/5 [13.037,13.062] +
13.13826 -0.697007 1.09433 1/2 [5.463,5.580] +
14.90941 -0.790968 2.76171 1/3 [6.779,6.847] +
16.03507 -0.850687 2.61695 2/5 [5.352,5.457] +
16.57031 -0.879082 2.44831 1/3 [3.869,3.957] -
17.61955 -0.934746 2.43060 1/2 [3.967,4.154] -
19.78460 -1.049610 1.57727 1/3 [6.501,6.503] +
21.89957 -1.161810 2.58582 1/3 [6.441,6.443] +
25.74992 -1.366082 1.65989 1/3 [6.380,6.381] +
27.53447 -1.460752 2.51159 1/3 [6.362,6.363] +

m1 = m2 = 1.05, m3 = 0.9
12.20094 -0.647280 0.98928 1/3 [7.276,7.323] +
15.79177 -0.837779 2.68412 1/3 [6.275,6.341] +
16.61662 -0.881539 2.33447 1/3 [3.779,3.943] -

Figure-eight: m1 = m2 = m3 = 1.0
24.37193 -1.29297 0 - [1.973,1.982] +

collisions at any mass values lie on the equator, in the space of shapes, three rays
correspond to double collisions (in the plane of the equator).

2. Periodic orbits

To find a periodic solution to the three-body problem, it is enough to find a (local)
minimizer of the functional of the action of the problem in the space of 2π-periodic
functions, periodic solutions with a period other than 2π can be found using the
scale symmetry and you can search for a solution in the form

xj(t) = C0
x +

∑
i=1

Cj
xi cos it+ Sj

xi sin it

yj(t) = C0
y +

∑
i=1

Cj
yi

cos it+ Sj
yi

sin it,
(3)

where j is the body number.
Barutello et al. [1] showed that all finite symmetry groups of the Lagrangian

action functional in the planar three-body problem contain only ten elements.
The corresponding 2π-periodic solutions for three groups from this list, the ¡¡lin-
ear¿¿ group, 2−1-choreographies and the dihedral group D12, are obtained. These
solutions are shown in the table 1 and table 2.
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Figure 1. Trajectories with 2− 1-symmetry, ω = 1/3

Due to the scale symmetry the solutions of the three-body problem r(t) can
be reduced to solutions with a fixed value (h = −1/2 if the energy constant is
negative) r(t) = λr(λ−1/2t): λ = h/h′ = 2E.

As can be seen from the tables, the moment of inertia of the obtained periodic
orbits changes little, usually less than a few percent, so it is interesting to look
at the obtained trajectories on the shape sphere. Figure ?? shows projections of
trajectories from the table 2 with ω = 1/3 on the plane of ϕ, θ.

Conclusion

Periodic orbits are determined by the variational method, these ones on the shape
space, more precisely on the shape sphere, look in the case of 2 − 1-symmetry
look like small quasi-circles around the point of double collisions C12, or around
the point of the corresponding Eulerian configuration E3; in the case of linear
symmetry, where all three masses are arbitrary, quasi-circles can be located both
around the points C12, C13, C23, and around the points E1, E2 or E3.
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Basic ideas of Topological Data Analysis

Vladimir Turaev

Abstract. We give a brief outline of certain basic ideas of Topological Data
Analysis. What is data? Does it have a meaningful shape? A topologist’s view
on the subject.
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A new proof of Maclagan's theorem

Nikolay Vassiliev

Abstract. Maclagan's theorem [1] states that every antichain of monomial
ideals is �nite. We present a new proof of this theorem and discuss some of
its consequences in the combinatorics of universal Gröbner bases. The proof
is based on a su�cient condition that the set of ideals of a noetherian poset
is again noetherian.
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